Welcome to visit Zhongnan Medical Journal Press Series journal website!

The research progress on multi-omics analysis biomarkers of benign prostatic hyperplasia

Published on Mar. 02, 2024Total Views: 1484 timesTotal Downloads: 2356 timesDownloadMobile

Author: QIAN Xinhang 1, 2, 3 GU Jiamin 3, 4 LU Peiwen 1, 2, 3 YANG Shisong 1, 2, 3 FANG Cheng 3 LI Xiaodong 1, 2, 5 ZENG Xiantao 3, 4

Affiliation: 1. School of Clinical Medicine, Henan University, Kaifeng 475400, Henan Province, China 2. Department of Urology, Huaihe Hospital of Henan University, Kaifeng 475400, Henan Province, China 3. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 4. Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 5. Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng 475400, Henan Province, China

Keywords: Benign prostatic hyperplasia Biomarkers Multi-omics analysis Aging

DOI: 10.12173/j.issn.1004-5511.202312069

Reference: Qian XH, Gu JM, Lu PW, Yang SS, Fang C, Li XD, Zeng XT. The research progress on multi-omics analysis biomarkers of benign prostatic hyperplasia[J]. Yixue Xinzhi Zazhi, 2024, 34(2): 206-216. DOI: 10.12173/j.issn.1004-5511.202312069.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Benign prostatic hyperplasia (BPH) is one of the most common benign diseases among the ageing male population with increasing prevalence, which can cause lower urinary tract symptoms and seriously affect the quality of life of patients. However, currently commonly used diagnostic methods (IPSS, rectal finger imaging, etc.) are difficult to detect to differentiate benign/malignant BPH, so biomarkers are relatively ideal for screening BPH and developing relevant targeted therapeutic drugs. This article reviews the research progress of multi-omics analysis related biomarkers in benign prostatic hyperplasia, including genetic, protein, metabolic, and microbial biological biomarkers, intending to provide direction and basis for early diagnosis of benign prostatic hyperplasia.

Full-text
Please download the PDF version to read the full text: download
References

1.Sayegh N, Gross K. Benign prostatic hyperplasia: a global challenge of the ageing population[J]. Lancet Healthy Longev, 2022, 3(11): e725-e726. DOI: 10.1016/s2666-7568(22)00243-4.

2.Agarwal A, Eryuzlu LN, Cartwright R, et al. What is the most bothersome lower urinary tract symptom? Individual- and population-level perspectives for both men and women[J]. Eur Urol, 2014, 65(6): 1211-1217. DOI: 10.1016/j.eururo.2014.01.019.

3.Yu Q, Wu C, Chen Y, et al. Inhibition of LIM kinase reduces contraction and proliferation in bladder smooth muscle[J]. Acta Pharm Sin B, 2021, 11(7): 1914-1930. DOI: 10.1016/j.apsb.2021.01.005.

4.Parsons JK. Benign prostatic hyperplasia and male lower urinary tract symptoms: epidemiology and risk factors[J]. Curr Bladder Dysfunct Rep, 2010, 5(4): 212-218. DOI: 10.1007/s11884-010-0067-2.

5.Zhu C, Wang DQ, Zi H, et al. Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019[J]. Mil Med Res, 2021, 8(1): 64. DOI: 10.1186/s40779-021-00359-8.

6.顾佳敏, 朱聪, 訾豪, 等. 1990-2019年中国良性前列腺增生疾病负担分析[J]. 解放军医学杂志, 2021, 46(10): 984-988. [Gu JM, Zhu C, Zi H, et al. Analysis of the disease burden of benign prostatic hyperplasia in China from 1990 to 2019[J]. Medical Journal of Chinese People's Liberation Army, 2021, 46(10): 984-988.] DOI: 10.11855/j.issn. 0577-7402.2021.10.05.

7.凌存保, 逄瑷博, 黄薇, 等. 良性前列腺增生相关标志物研究进展[J]. 标记免疫分析与临床, 2022, 29(10): 1767-1772. [Ling CB, Pang AB, Huang W, et al. A review of biomarkers associated with benign prostatic hyperplasia[J]. Labeled Immunoassays and Clinical Medicine, 2022, 29(10): 1767-1772.] DOI: 10.11748/bjmy.issn.1006-1703.2022.10.027.

8.庞元捷, 吕筠, 余灿清, 等. 多组学在慢性病病因学研究中的应用及其进展[J]. 中华流行病学杂志, 2021, 42(1): 1-9. [Pang YJ, Lyu J, Yu CQ, et al. A multi-omics approach to investigate the etiology of non-communicable diseases: recent advance and applications[J]. Chinses Journal of Epidemiology, 2021, 42(1): 1-9] DOI: 10.3760/cma.j.cn112338-20201201-01370.

9.Xu X, Hou J, Lv J, et al. Overexpression of lncRNA GAS5 suppresses prostatic epithelial cell proliferation by regulating COX-2 in chronic non-bacterial prostatitis[J]. Cell cycle, 2019, 18(9): 923-931. DOI:10.1080/15384101.2019.1593644.

10.Wang R, Zhang M, Ou Z, et al. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFβ1 axes[J]. Aging (Albany NY), 2019, 11(21): 9442-9460. DOI: 10.18632/aging.102395.

11.Rezatabar S, Moudi E, Sadeghi F, et al. Evaluation of the plasma level of long non-coding RNA PCAT1 in prostatic hyperplasia and newly diagnosed prostate cancer patients[J]. J Gene Med, 2020, 22(10): e3239. DOI: 10.1002/jgm.3239.

12.Işın M, Uysaler E, Özgür E, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease[J]. Front Genet, 2015, 6: 168. DOI: 10. 3389/fgene.2015.00168.

13.Greco F, Inferrera A, La Rocca R, et al. The potential role of micrornas as biomarkers in benign prostatic hyperplasia: a systematic review and Meta-analysis[J]. Eur Urol Focus, 2019, 5(3): 497-507. DOI: 10.1016/j.euf.2018.01.008.

14.Viana NI, Reis ST, Dip NG, et al. MicroRNAs 143 and 145 may be involved in benign prostatic hyperplasia pathogenesis through regulation of target genes and proteins[J]. Int J Biol Markers, 2014, 29(3): e246-52. DOI: 10.5301/jbm.5000069.

15.Ke ZB, Cai H, Wu YP, et al. Identification of key genes and pathways in benign prostatic hyperplasia[J]. J Cell Physiol, 2019, 234(11): 19942-19950. DOI: 10.1002/jcp.28592.

16.Sachdeva R, Kaur N, Kapoor P, et al. Computational analysis of protein-protein interaction network of differentially expressed genes in benign prostatic hyperplasia[J]. Mol Biol Res Commun, 2022, 11(2): 85-96. DOI: 10.22099/mbrc.2022.43721.1746.

17.Xiang P, Liu D, Guan D, et al. Identification of key genes in benign prostatic hyperplasia using bioinformatics analysis[J]. World J Urol, 2021, 39(9): 3509-3516. DOI: 10.1007/s00345-021-03625-5.

18.Xu X, Wang Y, Sihong Z, et al. Immune infiltration pattern associated with diagnosis and development in benign prostatic hyperplasia[J]. Urol J, 2021, 18(5): 564-572. DOI: 10.22037/uj.v18i.6678.

19.Chung BH, Hong SJ, Cho JS, et al. Relationship between serum prostate-specific antigen and prostate volume in Korean men with benign prostatic hyperplasia: a multicentre study[J]. BJU Int, 2006, 97(4): 742-746. DOI: 10.1111/j.1464-410X.2006.06016.x.

20.Veltri RW, Miller MC. Free/total PSA ratio improves differentiation of benign and malignant disease of the prostate: critical analysis of two different test populations[J]. Urology, 1999, 53(4): 736-745. DOI: 10.1016/s0090-4295(98)00617-7.

21.Mcnally CJ, Ruddock MW, Moore T, et al. Biomarkers that differentiate benign prostatic hyperplasia from prostate cancer: a literature review[J]. Cancer Manag Res, 2020, 12: 5225-5241. DOI: 10.2147/cmar.S250829.

22.Slawin KM, Shariat S, Canto E. BPSA: a novel serum marker for benign prostatic hyperplasia[J]. Rev Urol, 2005, 7 Suppl 8(Suppl 8): S52-56. https://pubmed.ncbi.nlm.nih.gov/16985891/.

23.Sarwar S, Adil MA, Nyamath P, et al. Biomarkers of prostatic cancer: an attempt to categorize patients into prostatic carcinoma, benign prostatic hyperplasia, or prostatitis based on serum prostate specific antigen, prostatic acid phosphatase, calcium, and phosphorus[J]. Prostate Cancer, 2017, 2017: 5687212. DOI: 10.1155/ 2017/5687212.

24.Kwong J, Xuan JW, Chan PS, et al. A comparative study of hormonal regulation of three secretory proteins (prostatic secretory protein-PSP94, probasin, and seminal vesicle secretion II) in rat lateral prostate[J]. Endocrinology, 2000, 141(12): 4543-4551. DOI: 10.1210/endo.141.12.7818.

25.Teni TR, Sheth AR, Kamath MR, et al. Serum and urinary prostatic inhibin-like peptide in benign prostatic hyperplasia and carcinoma of prostate[J]. Cancer Lett, 1988, 43(1-2): 9-14. DOI: 10.1016/0304-3835(88)90205-4.

26.Williams G. Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER-α and GPER signalling[J]. Mol Cell Endocrinol, 2012, 351(2): 269-278. DOI: 10.1016/j.mce.2011.12.017.

27.Nicholson TM, Moses MA, Uchtmann KS, et al. Estrogen receptor-α is a key mediator and therapeutic target for bladder complications of benign prostatic hyperplasia[J]. J Urol, 2015, 193(2): 722-729. DOI: 10.1016/j.juro.2014. 08.093.

28.Singh S, Kumar V, Vashisht K, et al. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides[J]. Toxicol Appl Pharmacol, 2011, 257(1): 84-92. DOI: 10.1016/j.taap.2011.08.021.

29.Kumar V, Banerjee BD, Datta SK, et al. Association of CYP1A1, CYP1B1 and CYP17 gene polymorphisms and organochlorine pesticides with benign prostatic hyperplasia[J]. Chemosphere, 2014, 108: 40-45. DOI: 10.1016/j.chemosphere.2014.02.081.

30.Mononen N, Schleutker J. Polymorphisms in genes involved in androgen pathways as risk factors for prostate cancer[J]. J Urol, 2009, 181(4): 1541-1549. DOI: 10.1016/j.juro.2008.11.076.

31.Chen ZP, Yan Y, Chen CJ, et al. The single nucleotide polymorphism rs700518 is an independent risk factor for metabolic syndrome and benign prostatic hyperplasia (MetS-BPH)[J]. Andrology, 2018, 6(4): 568-578. DOI: 10.1111/andr.12498.

32.Jin BR, Lim CY, Kim HJ, et al. Antioxidant mitoquinone suppresses benign prostatic hyperplasia by regulating the AR-NLRP3 pathway[J]. Redox Biol, 2023, 65: 102816. DOI: 10.1016/j.redox.2023.102816.

33.Penna G, Mondaini N, Amuchastegui S, et al. Seminal plasma cytokines and chemokines in prostate inflammation: interleukin 8 as a predictive biomarker in chronic prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia[J]. Eur Urol, 2007, 51(2): 524-533. DOI: 10.1016/j.eururo.2006.07.016.

34.Schauer IG, Ressler SJ, Rowley DR. Keratinocyte-derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model[J]. Prostate, 2009, 69(4): 373-384. DOI: 10.1002/pros.20886.

35.Arivazhagan J, Nandeesha H, Dorairajan LN, et al. Association of elevated interleukin-17 and angiopoietin-2 with prostate size in benign prostatic hyperplasia[J]. Aging Male, 2017, 20(2): 115-118. DOI: 10.1080/13685538.2017.1284778.

36.Begley LA, Kasina S, Macdonald J, et al. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy[J]. Cytokine, 2008, 43(2): 194-199. DOI: 10.1016/j.cyto.2008.05.012.

37.Tyagi P, Motley SS, Koyama T, et al. Molecular correlates in urine for the obesity and prostatic inflammation of BPH/LUTS patients[J]. Prostate, 2018, 78(1): 17-24. DOI: 10.1002/pros.23439.

38.Fujita K, Ewing CM, Getzenberg RH, et al. Monocyte chemotactic protein-1 (MCP-1/CCL2) is associated with prostatic growth dysregulation and benign prostatic hyperplasia[J]. Prostate, 2010, 70(5): 473-481. DOI: 10.1002/pros.21081.

39.Inamura S, Ito H, Shinagawa T, et al. Serum C-reactive protein level is not associated with prostatic inflammation but with overactive detrusor in patients with benign prostatic hyperplasia[J]. Neurourol Urodyn, 2019, 38(6): 1728-1736. DOI: 10.1002/nau.24051.

40.Menschikowski M, Hagelgans A, Fuessel S, et al. Serum amyloid A, phospholipase A(2)-IIA and C-reactive protein as inflammatory biomarkers for prostate diseases[J]. Inflamm Res, 2013, 62(12): 1063-1072. DOI: 10.1007/s00011-013-0665-5.

41.Cheng HL, Huang HJ, Ou BY, et al. Urinary CD14 as a potential biomarker for benign prostatic hyperplasia - discovery by combining MALDI-TOF-based biostatistics and ESI-MS/MS-based stable-isotope labeling[J]. Proteomics Clin Appl, 2011, 5(3-4): 121-132. DOI: 10.1002/prca.201000011.

42.Torkko KC, Wilson RS, Smith EE, et al. Prostate biopsy markers of inflammation are associated with risk of clinical progression of benign prostatic hyperplasia: findings from the MTOPS study[J]. J Urol, 2015, 194(2): 454-461. DOI: 10.1016/j.juro.2015.03.103.

43.Berger AP, Kofler K, Bektic J, et al. Increased growth factor production in a human prostatic stromal cell culture model caused by hypoxia[J]. Prostate, 2003, 57(1): 57-65. DOI: 10.1002/pros.10279.

44.Zhou Z, Wu L, Zhao S, et al. Upregulation of FGF7 induced intravesical prostatic protrusion of benign prostatic hyperplasia via the ERK1/2 signaling pathway[J]. Gerontology, 2023, 69(5): 615-627. DOI: 10.1159/000527929.

45.Yuan YF, Zhu WX, Liu T, et al. Cyclopamine functions as a suppressor of benign prostatic hyperplasia by inhibiting epithelial and stromal cell proliferation via suppression of the Hedgehog signaling pathway[J]. Int J Mol Med, 2020, 46(1): 311-319. DOI: 10.3892/ijmm.2020.4569.

46.Royuela M, De Miguel MP, Bethencourt FR, et al. Transforming growth factor beta 1 and its receptor types I and II. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma[J]. Growth Factors, 1998, 16(2): 101-110. DOI: 10.3109/08977199809002121.

47.Wang L, Xie L, Tintani F, et al. Aberrant transforming growth factor-β activation recruits mesenchymal stem cells during prostatic hyperplasia[J]. Stem Cells Transl Med, 2017, 6(2): 394-404. DOI: 10.5966/sctm.2015-0411.

48.Roberts RO, Jacobson DJ, Girman CJ, et al. Insulin-like growth factor I, insulin-like growth factor binding protein 3, and urologic measures of benign prostatic hyperplasia[J]. Am J Epidemiol, 2003, 157(9): 784-791. DOI: 10.1093/aje/kwf054.

49.Lin J, Zhou J, Zhong X, et al. Inhibition of the signal transducer and activator of transcription 3 signaling pathway by Qianliening capsules suppresses the growth and induces the apoptosis of human prostate cells[J]. Mol Med Rep, 2015, 11(3): 2207-2214. DOI: 10.3892/mmr.2014.2946.

50.Tyagi P, Barclay D, Zamora R, et al. Urine cytokines suggest an inflammatory response in the overactive bladder: a pilot study[J]. Int Urol Nephrol, 2010, 42(3): 629-635. DOI: 10.1007/s11255-009-9647-5.

51.Abdel-Aziz AM, Gamal El-Tahawy NF, Salah Abdel Haleem MA, et al. Amelioration of testosterone-induced benign prostatic hyperplasia using febuxostat in rats: the role of VEGF/TGFβ and iNOS/COX-2[J]. Eur J Pharmacol, 2020, 889: 173631. DOI: 10.1016/j.ejphar.2020.173631.

52.Trujillo-Rojas L, Fernández-Novell JM, Blanco-Prieto O, et al. The onset of age-related benign prostatic hyperplasia is concomitant with increased serum and prostatic expression of VEGF in rats: Potential role of VEGF as a marker for early prostatic alterations[J]. Theriogenology, 2022, 183: 69-78. DOI: 10.1016/j.theriogenology.2022.01.014.

53.Cheng G, Dai M, Xin Q, et al. Patients with benign prostatic hyperplasia show shorter leukocyte telomere length but no association with telomerase gene polymorphisms in Han Chinese males[J]. Int J Clin Exp Pathol, 2020, 13(8): 2123-2129. https://pubmed.ncbi.nlm.nih.gov/32922609/.

54.Rane JK, Greener S, Frame FM, et al. Telomerase activity and telomere length in human benign prostatic hyperplasia stem-like cells and their progeny implies the existence of distinct basal and luminal cell lineages[J]. Eur Urol, 2016, 69(4): 551-554. DOI: 10.1016/j.eururo.2015.09.039.

55.Adrian AE, Liu TT, Pascal LE, et al. Aging-related mitochondrial dysfunction is associated with fibrosis in benign prostatic hyperplasia[J]. J Gerontol A Biol Sci Med Sci, 2023. 20: glad222. DOI: 10.1093/gerona/glad222.

56.Vital P, Castro P, Ittmann M. Oxidative stress promotes benign prostatic hyperplasia[J]. Prostate, 2016, 76(1): 58-67. DOI: 10.1002/pros.23100.

57.Elsherbini DMA, Almohaimeed HM, El-Sherbiny M, et al. Extract attenuated benign prostatic hyperplasia in rat model: effect on oxidative stress, apoptosis, and proliferation[J]. Antioxidants (Basel), 2022, 11(6): 1149. DOI: 10.3390/antiox11061149.

58.Domoslawska A, Zdunczyk S, Kankofer M, et al. Oxidative stress biomarkers in dogs with benign prostatic hyperplasia[J]. Ir Vet J, 2022, 75(1): 21. DOI: 10.1186/s13620-022-00228-3.

59.Zhang W, Zheng X, Wang Y, et al. Vitamin D deficiency as a potential marker of benign prostatic hyperplasia[J]. Urology, 2016, 97: 212-218. DOI: 10.1016/j.urology. 2016.03.070.

60.Kristal AR, Arnold KB, Schenk JM, et al. Dietary patterns, supplement use, and the risk of symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial[J]. Am J Epidemiol, 2008, 167(8): 925-934. DOI: 10.1093/aje/kwm389.

61.Xiong Y, Zhang Y, Tan J, et al. The association between metabolic syndrome and lower urinary tract symptoms suggestive of benign prostatic hyperplasia in aging males: evidence based on propensity score matching[J]. Transl Androl Urol, 2021, 10(1): 384-396. DOI: 10.21037/tau-20-1127.

62.Zhu C, Wu J, Wu Y, et al. Triglyceride to high-density lipoprotein cholesterol ratio and total cholesterol to high-density lipoprotein cholesterol ratio and risk of benign prostatic hyperplasia in Chinese male subjects[J]. Front Nutr, 2022, 9: 999995. DOI: 10.3389/fnut.2022.999995.

63.Afify H, Abo-Youssef AM, Abdel-Rahman HM, et al. The modulatory effects of cinnamaldehyde on uric acid level and IL-6/JAK1/STAT3 signaling as a promising therapeutic strategy against benign prostatic hyperplasia[J]. Toxicol Appl Pharmacol, 2020, 402: 115122. DOI: 10.1016/j.taap.2020.115122.

64.Sangkop F, Singh G, Rodrigues E, et al. Uric acid: a modulator of prostate cells and activin sensitivity[J]. Mol Cell Biochem, 2016, 414(1-2): 187-199. DOI: 10.1007/s11010-016-2671-8.

65.Hwang J, Ryu S, Ahn JK. Higher levels of serum uric acid have a significant association with lower incidence of lower urinary tract symptoms in healthy korean men[J]. Metabolites, 2022, 12(7): 649. DOI: 10.3390/metabo12070649.

66.Siroosbakht S, Rezakhaniha S, Namdari F, et al. Is there relationship between serum uric acid levels and lower urinary tract symptoms, prostate volume, and PSA in men without cancer? A prospective population-based study[J]. Andrologia, 2021, 53(10): e14200. DOI: 10.1111/and.14200.

67.Ratajczak W, Mizerski A, Ryl A, et al. Alterations in fecal short chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) in men with benign prostatic hyperplasia (BPH) and metabolic syndrome (MetS) [J]. Aging (Albany NY), 2021, 13(8): 10934-10954. DOI: 10.18632/aging.202968.

68.Ratajczak W, Laszczyńska M, Ryl A‚ et al. Tissue immunoexpression of IL-6 and IL-18 in aging men with BPH and MetS and their relationship with lipid parameters and gut microbiota - derived short chain fatty acids[J]. Aging (Albany NY), 2023, 15(20): 10875-10896. DOI: 10.18632/aging.205091.

69.Fang C, Wu L, Zhu C, et al. A potential therapeutic strategy for prostatic disease by targeting the oral microbiome[J]. Med Res Rev, 2021, 41(3): 1812-1834. DOI: 10.1002/med.21778.

70.Wu L, Li BH, Wang YY, et al. Periodontal disease and risk of benign prostate hyperplasia: a cross-sectional study[J]. Mil Med Res, 2019, 6(1): 34. DOI: 10.1186/s40779-019-0223-8.

71.Guo XP, Yang J, Wu L, et al. Periodontitis relates to benign prostatic hyperplasia via the gut microbiota and fecal metabolome[J]. Front Microbiol, 2023, 14: 1280628. DOI: 10.3389/fmicb.2023.1280628.

72.Fang C, Wu L, Zhao MJ, et al. Periodontitis exacerbates benign prostatic hyperplasia through regulation of oxidative stress and inflammation[J]. Oxid Med Cell Longev, 2021, 2021: 2094665. DOI: 10.1155/2021/2094665.

73.Estemalik J, Demko C, Bissada NF, et al. Simultaneous detection of oral pathogens in subgingival plaque and prostatic fluid of men with periodontal and prostatic diseases[J]. J Periodontol, 2017, 88(9): 823-829. DOI: 10.1902/jop.2017.160477.

74.Matsushita M, Fujita K, Hayashi T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling[J]. Cancer Res, 2021, 81(15): 4014-4026. DOI: 10.1158/0008-5472.Can-20-4090.

75.Li LY, Han J, Wu L, et al. Alterations of gut microbiota diversity, composition and metabonomics in testosterone-induced benign prostatic hyperplasia rats[J]. Mil Med Res, 2022, 9(1): 12. DOI: 10.1186/s40779-022-00373-4.

76.Takezawa K, Fujita K, Matsushita M, et al. The firmicutes/bacteroidetes ratio of the human gut microbiota is associated with prostate enlargement[J]. Prostate, 2021, 81(16): 1287-1293. DOI: 10.1002/pros.24223.

77.Yu SH, Jung SI. The potential role of urinary microbiome in benign prostate hyperplasia/lower urinary tract symptoms[J]. Diagnostics (Basel), 2022, 12(8): 1862. DOI: 10.3390/diagnostics12081862.

78.Okada K, Takezawa K, Tsujimura G, et al. Localization and potential role of prostate microbiota[J]. Front Cell Infect Microbiol, 2022, 12: 1048319. DOI: 10.3389/fcimb.2022.1048319.

79.Tsai KY, Wu DC, Wu WJ, et al. Exploring the association between gut and urine microbiota and prostatic disease including benign prostatic hyperplasia and prostate cancer using 16S rRNA sequencing[J]. Biomedicines, 2022, 10(11): 2676. DOI: 10.3390/biomedicines10112676.

80.梅鑫, 张世科, 张巧珍, 等. 前列腺增生导致下尿路症状手术时机的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(1): 96-99. [Mei X, Zhang SK, Zhang QZ, et al. Research progress on the timing of surgery for lower urinary tract symptoms caused by prostatic hyperplasia[J]. Chinese Journal of Endourology (Electronic Edition), 2024, 18(1): 96-99. ] DOI: 10.3877/cma.j.issn.1674-3253.2024.01.018.