Welcome to visit Zhongnan Medical Journal Press Series journal website!

The research and progress of ballistocardiogram-based blood pressure monitoring technology

Published on Apr. 24, 2021Total Views: 7761 timesTotal Downloads: 2892 timesDownloadMobile

Author: Zi-Qi CUI 1 Xiao-Man XING 2

Affiliation: 1. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China 2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu Province, China

Keywords: Ballistocardiogram Blood pressure monitoring No-load monitoring

DOI: 10.12173/j.issn.1004-5511.2021.02.07

Reference: Cui ZQ, Xing XM. The research and progress of ballistocardiogram-based blood pressure monitoring technology[J]. Yixue Xinzhi Zazhi, 2021, 31(2): 145-154. DOI: 10.12173/j.issn.1004-5511.2021.02.07.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Blood pressure is one of the most important physiological parameters, which is of great significance to the clinical assessment of individual health status and disease risk management. The ballistocardiogram-based approach to blood pressure monitoring has become one of the hottest topics in the field of blood pressure dynamic monitoring because it can recognize distribution measurement with low load, and quickly reflect blood pressure related information. It overcomes the problems of high load and inconvenient operation of traditional invasive and non-invasive methods. It offers the possibility of useful application in both in clinical and home monitoring. This paper reviews the principles, research progress and prospects of blood pressure monitoring technology based on BCG.

Full-text
Please download the PDF version to read the full text: download
References

1. 《中国高血压基层管理指南》修订委员会.中国高血压基层管理指南(2014年修订版)[J]. 中华高血压杂志, 2015, 23(1): 24-43. DOI: 10.3760/cma.j.issn.1674- 0815.2015.01.004. [Revision committee of Chinese guidelines for primary hypertension management. Chinese guidelines for primary hypertension management (2014 revision)[J]. Chinese Journal of Hypertension, 2015, 23(1): 24-43.]

2. Inan OT, Etemadi M, Wiard RM, et al. Robust ballistocardiogram acquisition for home monitoring[J]. Physiol Meas, 2019, 30(2): 169-185. DOI: 10.1088/0967-3334/30/2/005.

3. 孙宁玲, Chen JW, 王继光, 等. 亚洲高血压合并左心室肥厚诊治专家共识[J]. 中华高血压杂志, 2016, 24(7): 619-627. DOI: CNKI:SUN:ZGGZ.0.2016-07-008. [Sun NL, Chen JW, Wang JG, et al. Expert consensus on diagnosis and treatment of Asian hypertension with left ventricular hypertrophy[J]. Chinese Journal of Hypertension, 2016, 24(7): 619-627.]

4. Brunström M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels[J]. JAMA Intern Med, 2018, 178(1): 28-36. DOI: 10.1001/jamainternmed.2017.6015.

5. Perez-Lloret S, Toblli JE, Vigo DE, et al. Infradian awake and asleep systolic and diastolic blood pressure rhythms in humans[J]. J Hypertens, 2006, 24(7): 1273-1279. DOI: 10.1097/01.hjh.0000234106.00745.50. 

6. Larry CD, Yeo S. The circadian rhythm of blood pressure during pregnancy[J]. J Obstet Gynecol Neonatal Nurs, 2000, 29(5): 500-508. DOI: 10.1111/j.1552-6909.2000.tb02771.x. 

7. Hermida RC, Ayala DE, Smolensky MH, et al. Sleep-time blood pressure: unique sensitive prognostic marker of vascular risk and therapeutic target for prevention[J]. Sleep med rev, 2017, 33: 17-27. DOI: 10.1016/j.smrv.2016.04.001.

8. Bruno RM, Taddei S. Asleep blood pressure: a target for cardiovascular event reduction?[J]. Eur heart J, 2018, 39(47): 4172-4174. DOI: 10.1093/eurheartj/ehy557.

9. Hermida RC, Crespo JJ, Otero A, et al. Asleep blood pressure: significant prognostic marker of vascular risk and therapeutic target for prevention[J]. Eur heart J, 2018, 39(47) : 1459. DOI: 10.1093/eurheartj/ehy475.

10. Silke B, Mcauley DF. Accuracy and precision of blood pressure determination with the Finapres: an overview using re-sampling statistics[J]. J Hum Hypertens, 1998. 12(6): 403-409. DOI: 10.1038/sj.jhh.1000600. 

11. Komori T, Eguchi K, Hoshide S, et al. Comparison of wrist-type and arm-type 24-h blood pressure monitoring devices for ambulatory use[J]. Blood Press Monit, 2013, 18(1): 57-62. DOI: 10.1097/mbp.0b013e32835d124f.  

12. Su BY, Enayati M, Ho KC, et al. Monitoring the relative blood pressure using a hydraulic bed sensor system[J]. IEEE Trans Biomed Eng, 2018, 66(3): 740-748. DOI: 10.1109/tbme.2018.2855639.

13. Etemadi M, Inan OT. Wearable ballistocardiogram and seismocardiogram systems for health and performance[J]. J Appl Physiol, 2018, 124(2): 452-461. DOI: 10.1152/japplphysiol.00298.2017. 

14. Giovangrandi L, Inan OT, Wiard RM, et al. Ballisto- cardiography: a method worth revisiting[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2011, 2011: 4279-4282. DOI: 10.1109/iembs.2011.6091062.

15. Starr I, Wood FC. Twenty-year studies with the ballistocardiograph: the relation between the amplitude of the first record of "healthy" adults and eventual mortality and morbidity from heart disease[J]. Circulation, 1961, 23(5): 714-732. DOI: 10.1161/01.CIR.23.5.714.

16. Starr I, Rawson AJ, Schroeder HA, et al. Studies on the estimation of cardiac output in man, and of abnormalities in cardiac function, from the heart's recoil and the blood's impacts; The ballistocardiogram[J]. Am J Physiol, 1939, 127(1): 1-28. DOI: 10.1152/ajplegacy.1939.127.1.1.

17. Inan OT, Migeotte PF, Park KS, et al. Ballistocardiography and seismocardiography: a review of recent advances[J]. IEEE J Biomed Health Inform, 2017, 19(4): 1414-1427. DOI: 10.1109/JBHI.2014.2361732.

18. Ganesan M, Sumesh EP. Evaluating the force of contraction of heart using ballistocardiogram[C/OL]// 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC). IEEE, 2016: 1-5. https://ieeexplore.ieee.org/abstract/document/7460371.

19. Yousefian P, Shin S, Mousavi AS, et al. Physiological association between limb ballistocardiogram and arterial blood pressure waveforms: a mathematical model-based analysis[J]. Sci Rep, 2019, 9(1): 5146. DOI: 10.1038/s41598-019-41537-y.

20. Peyman Y, Sungtae S, Azin M, et al. Data mining investigation of the association between a limb ballistocardiogram and blood pressure[J]. Physiol Meas, 2018, 39(7): 075009. DOI: 10.1088/1361-6579/aacfe1.

21. Kim CS, Carek AM, Inan OT, et al. Ballistocardiogram-based approach to cuff-less blood pressure monitoring: proof-of-concept and potential challenges[J]. IEEE Trans Biomed Eng, 2018, 65(11): 2384-2391. DOI: 10.1109/TBME.2018.2797239.

22. 曹欣荣, 刘蕾, 蔡东阳, 等. 心冲击图特征统计及其医学诊断应用[J]. 清华大学学报(自然科学版), 2014, 54(5): 633-637. DOI: CNKI:SUN:QHXB.0.2014-05-015. [Cao XR, Liu L, Cai DY, et al. Cardiac impact chart characteristic statistics and its application in medical diagnosis[J]. Journal of Tsinghua University (Natural Science), 2014, 54(5): 633-637.]

23. Wen X, Huang Y, Wu XM, et al. A feasible feature extraction method for atrial fibrillation detection from BCG[J]. IEEE J Biomed Health Inform, 2020, 24(4): 1093-1103. DOI: 10.1109/JBHI.2019.2927165. 

24. 王敏. 基于智能床垫的心冲击图信号处理及其在心血管健康评估中的应用研究[D]. 北京: 北京邮电大学, 2018. [Wang M. Cardiac impulse chart signal processing based on smart mattress and its application in cardiovascular health assessment [D]. Beijing: Beijing University of Posts and Telecommunications, 2018.]

25. Shao D, Yang Y, Tsow F, et al. Non-contact simultaneous photoplethysmogram and ballistocardiogram video recording towards real-time blood pressure and abnormal heart rhythm monitoring[C/OL]//2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017). IEEE, 2017: 273-277. https://ieeexplore.ieee.org/abstract/document/7961752.

26. Sakajiri Y, Ueno A. Simultaneous measurements of capacitive electrocardiogram and ballistocardiogram using in-bed fabric sheet electrode for blood pressure estimation[C/OL]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2020: 4543-4546. https://ieeexplore.ieee.org/abstract/document/9176548.

27. Chen Z, Lau D, Teo JT, et al. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor[J]. J Biomed Opt, 2014, 19(5): 057001. DOI: 10.1117/1.JBO.19.5.057001.

28. Zhang Y, Chen Z, Chen W, et al. Unobtrusive and continuous BCG-based human identification using a microbend fiber sensor[J]. IEEE Access, 2019, 7: 72518-72527. DOI: 10.1109/ACCESS.2019.2919407.

29. 金晶晶. 心冲击图信号的无感觉检测与分析方法研究[D]. 沈阳: 东北大学, 2010. [Jin JJ. Study on the non-sensory detection and analysis method of cardiac impulse chart signal[D]. Shenyang: Northeastern University, 2010.]

30. Pandia K, Inan OT, Kovacs GT, et al. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer[J]. Physiol Meas, 2012, 33(10): 1643-1660. DOI: 10.1088/0967-3334/33/10/1643.

31. Zheng YL, Ding XR, Poon CC, et al. Unobtrusive sensing and wearable devices for health informatics[J]. IEEE Trans Biomed Eng, 2014, 61(5):1538-1554. DOI: 10.1109/TBME.2014.2309951.

32. González LR, Casas O, Pallàs AR. Heart rate detection from an electronic weighing scale[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2007, 2007: 6283-6286. DOI: 10.1109/IEMBS.2007.4353791.

33. Koivistoinen T, Junnila S, Värri A, et al. A new method for measuring the ballistocardiogram using EMFi sensors in a normal chair[J]. Conf Proc IEEE Eng Med Biol Soc, 2004, 2004: 2026-2029. DOI: 10.1109/IEMBS.2004.1403596.

34. 俞梦孙, 杨军, 周玉彬, 等. 用微动敏感床垫监测睡眠的研究[J]. 中华航空航天医学杂志, 1999(1): 41-46. DOI: 10.3760/cma.j.issn.1007-6239.1999.01.011. [Yu MS, Yang J, Zhou YB, et al. Study on monitoring sleep with micro-motion sensitive mattress[J]. Chinese Journal Of Aerospace Medicine, 1999(1): 41-46.]

35. 蒋芳芳, 王旭, 杨丹. 基于心脏动力学的体震信号建模与仿真[J]. 系统仿真学报, 2013, 25(3): 420-424. DOI: CNKI:SUN:XTFZ.0.2013-03-007. [Jiang FF, Wang X, Yang D. Modeling and simulation of ballistocardiogram signal based on cardiac dynamics[J]. Journal of System Simulation, 2013, 25(3): 420-424.]

36. Javaid AQ, Wiens AD, Fesmire NF, et al. Quantifying and reducing posture-dependent distortion in ballistocardiogram measurements[J]. IEEE J Biomed Health Inform, 2015, 19(5): 1549. DOI: 10.1109/JBHI.2015.2441876.

37. Kim CS, Ober SL, Mcmurtry MS, et al. Ballistocardiogram: mechanism and potential for unobtrusive cardiovascular health monitoring[J]. Sci Rep, 2016, 6: 31297. DOI: 10.1038/srep31297.

38. Yousefian P, Shin S, Mousavi A, et al. The potential of wearable limb ballistocardiogram in blood pressure monitoring via pulse transit time[J]. Sci Rep, 2019, 9(1): 10666. DOI: 10.1038/s41598-019-46936-9.

39. Lee K, Roh J, Cho D, et al. A chair-based unconstrained/nonintrusive cuffless blood pressure monitoring system using a two-channel ballistocardiogram[J]. Sensors (Basel), 2019, 19(3): 595. DOI: 10.3390/s19030595.

40. Martín-Yebra A, Landreani F, Casellato C, et al. Evaluation of respiratory- and postural-induced changes on the ballistocardiogram signal by time warping averaging[J]. Physiol Meas, 2017, 38(7): 1426-1440. DOI: 10.1088/1361-6579/aa72b0.

41. Martin LO, Carek AM, Kim CS, et al. Weighing scale-based pulse transit time is a superior marker of blood pressure than conventional pulse arrival time[J]. Sci Rep, 2016, 6(1): 39273. DOI: 10.1038/srep39273.

42. Cannesson M, Pestel G, Ricks C, et al. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists[J]. Crit Care, 2011, 15(4): R197. DOI: 10.1186/cc10364.

43. 张政波, 吴太虎. 无创血压测量技术与进展[J]. 中国医疗器械杂志, 2003, 27(3): 196-199. DOI: 10.3969/j.issn.1671-7104.2003.03.012. [Zhang ZB, Wu TH. Noninvasive blood pressure measurement technology and Its Progress[J]. Chinese Journal of Medical Devices, 2003, 27(3): 196-199.]

44. Weiss BM, Spahn DR, Rahmig H, et al. Radial artery tonometry: moderately accurate but unpredictable technique of continuous non-invasive arterial pressure measurement[J]. Br J Anaesth, 1996, 76(3): 405-411. DOI: 10.1093/bja/76.3.405. 

45. Harasawa K, Yamane M, Morimoto Y, et al. Performance of a tonometer for arterial pressure measurement during anesthesia in the elderly[J]. J Anesth, 2004, 18(4): 316-317. DOI: 10.1007/s00540-004-0261-5.

46. 周亚群, 丁存涛, 孙希鹏, 等. 原发性高血压患者红细胞分布宽度、中性粒细胞/淋巴细胞比值与内皮功能关系的研究[J]. 首都医科大学学报, 2018, 39(2): 292-298. DOI: 10.3969/j.issn.1006-7795.2018.02.025. [Zhou YQ, Ding CT, Sun XP, et al. Relationship between erythrocyte distribution width, neutrophil/lymphocyte ratio and endothelial function in patients with essential hypertension[J]. Journal of Capital Medical University, 2018, 39(2): 292-298.]

47. Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis[J]. J Biomech, 1983, 16(2): 141-152. DOI: 10.1016/0021-9290(83)90037-4.

48. 吴慧芳, 郭自强, 许秋雯, 等. 高血压不同中医证型病人超声心动图及心冲击图的差异性分析[J]. 中西医结合心脑血管病杂志, 2020, 18(13): 2024-2027. DOI:10.12102/j.issn.1672-1349.2020.13.002. [Wu HF, Guo ZQ, Xu QW, et al. Difference analysis of echocardiography and cardiac impact map in patients with different TCM syndromes of hypertension[J]. Journal of Combined Chinese and Western Medicine, Cardio-Cerebrovascular Disease, 2020, 18(13): 2024-2027.]