Welcome to visit Zhongnan Medical Journal Press Series journal website!

Progress in molecular pathology and targeted therapy of pulmonary sacromatiod carcinoma

Published on Apr. 24, 2021Total Views: 9484 timesTotal Downloads: 3307 timesDownloadMobile

Author: Yu-Wei DING 1, 2, 3 Xiu-Jun TANG 1, 2, 3 Yi CHENG 1, 2, 3 Ning ZHU 1, 2, 3 Shan-Shan WENG 1, 2, 3 Ying YUAN 1, 2, 3

Affiliation: 1. Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China 2. Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China 3. Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China

Keywords: Pulmonary sacromatiod carcinoma Targeted therapy Molecular pathology Precision medicine Immunotherapy

DOI: 10.12173/j.issn.1004-5511.2021.02.06

Reference: Ding YW, Tang XJ, Cheng Y, Zhu N, Weng SS, Yuan Y. Progress in molecular pathology and targeted therapy of pulmonary sacromatiod carcinoma[J]. Yixue Xinzhi Zazhi, 2021, 31(2): 138-144. DOI: 10.12173/j.issn.1004-5511.2021.02.06.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Pulmonary sacromatiod carcinoma is a non-small cell lung cancer that contains a component of sarcoma or sarcoma-like differentiation, with an incidence of 2% to 3% of the total non-small cell lung cancer. They are poorly differentiated, highly invasive and insensitive to platinum-based chemotherapy. Due to its limited treatment, it has always caused significant difficulty in clinical work. A variety of gene mutations have been found in pulmonary sarcomatoid carcinomas, including TP53, EGFR, KRAS, MET and ALK, as well as high PD-L1 positive rates in recent studies. These molecular characteristics are expected to bring new hope for targeted therapy of pulmonary sarcomatoid carcinomas. This review focuses on pulmonary sarcomatoid carcinoma.

Full-text
Please download the PDF version to read the full text: download
References

1.  Travis WD, Brambilla E, Burke AP, et al. Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart[J]. J Thorac Oncol, 2015, 10(9): 1240-1242. DOI: 10.1097/JTO.0000000000000663.

2.  Yendamuri S, Caty L, Pine M, et al. Outcomes of sarcomatoid carcinoma of the lung: a surveillance, epidemiology, and end results database analysis[J]. Surgery, 2012, 152(3): 397-402. DOI: 10.1016/j.surg. 2012.05.007.

3.  Cates JM, Dupont WD, Barnes JW, et al. Markers of epithelial-mesenchymal transition and epithelial differentiation in sarcomatoid carcinoma: utility in the differential diagnosis with sarcoma[J]. Appl Immunohistochem Mol Morphol, 2008, 16(3): 251-262. DOI: 10.1097/PAI.0b013e318156e9b4.

4.  Bae HM, Min HS, Lee SH, et al. Palliative chemotherapy for pulmonary pleomorphic carcinoma[J]. Lung Cancer, 2007, 58(1): 112-115. DOI: 10.1016/j.lungcan.2007.05. 006.

5.  Liu X, Jia Y, Stoopler MB, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations[J]. J Clin Oncol, 2016, 34(8): 794-802. DOI: 10.1200/JCO.2015.62.0674.

6.  Fallet V, Saffroy R, Girard N, et al. High-throughput somatic mutation profiling in pulmonary sarcomatoid carcinomas using the LungCarta™ Panel: exploring therapeutic targets[J]. Ann Oncol, 2015, 26(8): 1748-1753. DOI: 10.1093/annonc/mdv232.

7.  Maneenil K, Xue Z, Liu M, et al. Sarcomatoid carcinoma of the lung: the mayo clinic experience in 127 patients[J]. Clin Lung Cancer, 2018, 19(3): e323-e333. DOI: 10.1016/j.cllc.2017.12.008.

8.  Wang S, Chen R, Tang Y, et al. Comprehensive genomic profiling of rare tumors: routes to targeted therapies[J/OL]. Frontiers in Oncology, 2020. [Access on 2020-07-15]. DOI: 10.3389/fonc.2020.00536.

9.  王恩华,张杰. 临床病理诊断与鉴别诊断——气管、肺、胸膜及纵隔疾病[M]. 北京:人民卫生出版社,2018. [Wang EH, Zhang J. Clinicopathological diagnosis and differential diagnosis-diseases of trachea, lung, pleura and mediastinum[M]. Beijing: People's Medical Publishing House, 2018.]

10.    Chang YL, Wu CT, Shih JY, et al. EGFR and p53 status of pulmonary pleomorphic carcinoma: implications for EGFR tyrosine kinase inhibitors therapy of an aggressive lung malignancy[J]. Ann Surg Oncol, 2011, 18(10): 2952-2960. DOI: 10.1245/s10434-011-1621-7.

11.    Terra SB, Jang JS, Bi L, et al. Molecular characterization of pulmonary sarcomatoid carcinoma: analysis of 33 cases[J]. Mod Pathol, 2016, 29(8): 824-831. DOI: 10.1038/modpathol.2016.89.

12.    Liang X, Li Q, Xu B, et al. Mutation landscape and tumor mutation burden analysis of Chinese patients with pulmonary sarcomatoid carcinomas[J]. Int J Clin Oncol, 2019, 24(9): 1061-1068. DOI: 10.1007/s10147-019-01454-6.

13.    Lococo F, Gandolfi G, Rossi G, et al. Deep sequencing analysis reveals that kras mutation is a marker of poor prognosis in patients with pulmonary sarcomatoid carcinoma[J]. J Thorac Oncol, 2016, 11(8): 1282-1292. DOI: 10.1016/j.jtho.2016.04.020.

14.    Travis WD. Sarcomatoid neoplasms of the lung and pleura[J]. Arch Pathol Lab Med, 2010, 134(11): 1645-1658. DOI: 10.1043/2010-0086-RAR.1.

15.    Kaira K, Horie Y, Ayabe E, et al. Pulmonary pleomorphic carcinoma: a clinicopathological study including EGFR mutation analysis[J]. J Thorac Oncol, 2010, 5(4): 460-465. DOI: 10.1097/JTO.0b013e3181ce3e3c.

16.    Pelosi G, Gasparini P, Cavazza A, et al. Multiparametric molecular characterization of pulmonary sarcomatoid carcinoma reveals a nonrandom amplification of anaplastic lymphoma kinase (ALK) gene[J]. Lung Cancer, 2012, 77(3): 507-514. DOI: 10.1016/j.lungcan.2012.05.093.

17.    Jiang X, Liu Y, Chen C, et al. The value of biomarkers in patients with sarcomatoid carcinoma of the lung: molecular analysis of 33 cases[J]. Clin Lung Cancer, 2012, 13(4): 288-296. DOI: 10.1016/j.cllc.2011.11.004.

18.    Sim JK, Chung SM, Choi JH, et al. Clinical and molecular characteristics of pulmonary sarcomatoid carcinoma[J]. Korean J Intern Med, 2018, 33(4): 737-744. DOI: 10.3904/kjim.2017.245.

19.    Schrock AB, Li SD, Frampton GM, et al. Pulmonary sarcomatoid carcinomas commonly harbor either potentially targetable genomic alterations or high tumor mutational burden as observed by comprehensive genomic profiling[J]. J Thorac Oncol, 2017, 12(6): 932-942. DOI: 10.1016/j.jtho.2017.03.005.

20.    Pécuchet N, Vieira T, Rabbe N, et al. Molecular classification of pulmonary sarcomatoid carcinomas suggests new therapeutic opportunities[J]. Ann Oncol, 2017, 28(7): 1597-1604. DOI: 10.1093/annonc/mdx162.

21.    Mehrad M, Roy S, Laframboise WA, et al. Kras mutation is predictive of outcome in patients with pulmonary sarcomatoid carcinoma[J]. Histopathology, 2018, 73(2): 207-214. DOI: 10.1111/his.13505.

22.    Pelosi G, Gasparini P, Conte D, et al. Synergistic activation upon met and ALK coamplification sustains targeted therapy in sarcomatoid carcinoma, a deadly subtype of lung cancer[J]. J Thor Oncol, 2016, 11(5): 718-728. DOI: 10.1016/j.jtho.2016.01.009.

23.    Yu Y, Zhang Q, Zhang J, et al. Prevalence of MET exon 14 skipping mutation in pulmonary sarcomatoid carcinoma patients without common targetable mutations: a single-institute study[J]. J Cancer Res Ther, 2019, 15(4): 909-913. DOI: 10.4103/jcrt.JCRT_591_18.

24.    Li Y, Gao L, Ma D, et al. Identification of MET exon14 skipping by targeted DNA- and RNA-based next-generation sequencing in pulmonary sarcomatoid carcinomas[J]. Lung Cancer, 2018, 122: 113-119. DOI: 10.1016/j.lungcan.2018.06.001.

25.    Chen X, Zhang Y, Lu J, et al. Pulmonary sarcomatoid carcinoma with ALK rearrangement: frequency, clinical-pathologic characteristics, and response to ALK inhibitor[J]. Transl Oncol, 2017, 10(2): 115-120. DOI: 10.1016/j.tranon.2016.11.009.

26.    Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465. DOI: 10.1056/NEJMoa1200694.

27.    Velcheti V, Rimm DL, Schalper KA. Sarcomatoid lung carcinomas show high levels of programmed death ligand-1 (PD-L1) [J]. J Thor Oncol, 2013, 8(6): 803-805. DOI: 10.1097/JTO.0b013e318292be18.

28.    Kim S, Kim MY, Koh J, et al. Programmed death-1 ligand 1 and 2 are highly expressed in pleomorphic carcinomas of the lung: comparison of sarcomatous and carcinomatous areas[J]. Eur J Cancer, 2015, 51(17): 2698-2707. DOI: 10.1016/j.ejca.2015.08.013.

29.    张子涵, 张中冕, 李静, 等. 肺肉瘤样癌高表达PD-L1、RAB1A及其临床意义[J]. 实用医学杂志, 2018, 34(7): 1059-1063. DOI: 10.3969/j.issn.1006-5725. 2018.07.004. [Zhang ZH, Zhang ZM, Li J, et al. Significance of the high expression of PD-L1 and RAB1A in pulmonary sarcomatoid carcinoma[J]. The Journal of Practical Medicine, 2018, 34(7): 1059-1063.]

30.    Vieira T, Antoine M, Hamard C, et al. Sarcomatoid lung carcinomas show high levels of programmed death ligand-1 (PD-L1) and strong immune-cell infiltration by TCD3 cells and macrophages[J]. Lung Cancer, 2016, 98: 51-58. DOI: 10.1016/j.lungcan.2016.05.013.

31.    Lococo F, Torricelli F, Rossi G, et al. Inter-relationship between PD-L1 expression and clinic-pathological features and driver gene mutations in pulmonary sarcomatoid carcinomas[J]. Lung Cancer, 2017, 113: 93-101. DOI: 10.1016/j.lungcan.2017.09.009.

32.    Nakagomi T, Goto T, Hirotsu Y, et al. New therapeutic targets for pulmonary sarcomatoid carcinomas based on their genomic and phylogenetic profiles[J]. Oncotarget, 2018, 9(12): 10635-10649. DOI: 10.18632/oncotarget.24365.

33.    Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230): 124-128. DOI: 10.1126/science.aaa1348.

34.    Bi M, Zhao S, Said JW, et al. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma[J]. Proc Natl Acad Sci U S A, 2016, 113(8): 2170-2175. DOI: 10.1073/pnas.1525735113.

35.    Ge J, Yao B, Huang J, et al. Molecular genetic characterization reveals linear tumor evolution in a pulmonary sarcomatoid carcinomas patient with a novel phf20-ntrk1 fusion: a case report[J]. BMC Cancer, 2019, 19(1): 592. DOI: 10.1186/s12885-019-5780-4.

36.    Bykov VJ, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound[J]. Nat Med, 2002, 8(3): 282-288. DOI: 10.1038/nm0302-282.

37.    Tamura Y, Fujiwara Y, Yamamoto N, et al. Retrospective analysis of the efficacy of chemotherapy and molecular targeted therapy for advanced pulmonary pleomorphic carcinoma[J]. BMC Res Notes, 2015, 8(1): 800. DOI: 10.1186/s13104-015-1762-z.

38.    Zou F, Xie G, Ma JA, et al. Epidermal growth factor receptor mutation heterogeneity analysis of pulmonary sarcomatoid carcinoma successfully treated with erlotinib: a case report[J]. Oncol Lett, 2015, 9(5): 2239-2243. DOI: 10.3892/ol.2015.3057.

39.    Fakih M, O'Neil B, Price TJ, et al. Phase 1 study evaluating the safety, tolerability, pharma-cokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors[J]. J Clin Oncol, 2019, 37(15): 3003. DOI: 10.1200/JCO.2019.37.15_suppl.3003.

40.    Pelosi G, Scarpa A, Manzotti M, et al. K-ras gene mutational analysis supports a monoclonal origin of biphasic pleomorphic carcinoma of the lung[J]. Mod Path, 2004, 17(5): 538-546. DOI: 10.1038/modpathol.3800058.

41.    Li X, Zhang Z, Liu J, et al. Molecular features of giant-cell carcinoma of the lung: a case report and literature review[J]. Onco Targets Ther, 2018, 11: 751. DOI: 10.2147/OTT.S150124.

42.    Mansfield AS, Roden AC, Boland JM. Towards a molecular classification of pulmonary sarcomatoid carcinomas[J]. J Thorac Oncol, 2017, 12(6): 910-912. DOI: 10.1016/j.jtho.2017.04.012.

43.    Tong JH, Yeung SF, Chan AW, et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis[J]. Clin Cancer Res, 2016, 22(12): 3048-3056. DOI: 10.1158/1078-0432.CCR-15-2061.

44.    Lin L, Huang F, Chen F, et al. Anaplastic lymphoma kinase (ALK)-rearranged pulmonary pleomorphic carcinoma successfully treated with crizotinib[J]. J Int Med Res, 2018, 46(8): 3491-3497. DOI: 10.1177/0300060517748262.

45.    Chen F, Gu Q, Hu C, et al. Poor prognosis of pulmonary sarcomatoid carcinoma with KRAS mutation and ALK fusion[J]. Onco Targets Ther, 2019, 12: 3321-3325. DOI: 10.2147/OTT.S196751.

46.    Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer[J]. N Engl J Med, 2016, 375(19): 1823-1833. DOI: 10.1056/NEJMoa1606774.

47.    Cimpeanu E, Ahmed J, Zafar W, et al. Pembrolizumab - emerging treatment of pulmonary sarcomatoid carcinoma: a case report[J]. World J Clin Cases, 2020, 8(1): 97-102. DOI: 10.12998/wjcc.v8.i1.97.

48.    Domblides C, Leroy K, Monnet I, et al. Efficacy of immune checkpoint inhibitors in lung sarcomatoid carcinoma[J]. J Thorac Oncol, 2020, 15(5): 860-866. DOI: 10.1016/j.jtho.2020.01.014.

49.    Babacan NA, Pina IB, Signorelli D, et al. Relationship between programmed death receptor-ligand 1 expression and response to checkpoint inhibitor immunotherapy in pulmonary sarcomatoid carcinoma: a pooled analysis[J]. Clin Lung Cancer, 2020, 21(5): e456-e463. DOI: 10.1016/j.cllc.2020.02.022.

50.    Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells[J]. Cell, 2009, 138(2): 286-299. DOI: 10.1016/j.cell.2009.05.045.

51.    Chao MP, Alizadeh AA, Tang C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-hodgkin lymphoma[J]. Cell, 2010, 142(5): 699-713. DOI: 10.1016/j.cell.2010.07.044.

52.    Yang Z, Xu J, Li R, et al. PD-L1 and CD47 co-expression in pulmonary sarcomatoid carcinoma: a predictor of poor prognosis and potential targets of future combined immunotherapy[J]. J Cancer Res Clin Oncol, 2019, 145(12): 3055-3065. DOI: 10.1007/s00432-019-03023-w.