Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress of exosomes in the diagnosis and treatment of prostate cancer

Published on Apr. 24, 2021Total Views: 5083 timesTotal Downloads: 2697 timesDownloadMobile

Author: Li-Ming MA 1 Li-Na GONG 2 Yan LI 1

Affiliation: 1. Department of Laboratory Medicine, Jinghai District Hospital, Tianjin 301600, China 2. Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China

Keywords: Exosomes Prostate cancer Diagnosis Treatment

DOI: 10.12173/j.issn.1004-5511.2021.02.05

Reference: Ma LM, Gong LN, Li Y. Research progress of exosomes in the diagnosis and treatment of prostate cancer[J]. Yixue Xinzhi Zazhi, 2021, 31(2): 132-137. DOI: 10.12173/j.issn.1004-5511.2021.02.05.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

The incidence of prostate cancer (PCa) is insidious, and most patients in China are in the late stage of the disease when they are treated. Therefore, it is necessary to explore more scientific and effective diagnosis and treatment methods for the disease. Exosomes are extracellular vesicles with a diameter of 30-100nm secreted by a variety of living cells. Tumor-related exosomes can be detected in a variety of body fluids of most cancer patients, and they play vital functions in the process of tumor occurrence, invasion and metastasis. The exosomes secreted by PCa cells can deliver miRNA and protein components between cells, which can effectively regulate the tumor microenvironment while accelerating the growth and metastasis of PCa cells. The main focus of this article is a review of the biological characteristics of exosomes and their role in the diagnosis and treatment of PCa.

Full-text
Please download the PDF version to read the full text: download
References

1.   陶文, 何涛, 何娅娣, 等.尿液外泌体circ_0040507联合PSA对前列腺癌诊断价值的初步研究[J]. 新医学, 2020, 51(6): 455-458. DOI: 10.3969/j.issn.0253-9802. 2020.06.010. [Tao W, He T, He YD, et al. Preliminary study on the diagnostic value of urine exosomes circ_0040507 combined with PSA in the diagnosis of prostate cancer[J]. New Medicine, 2020, 51(6): 455-458.]

2.   Yu Q, Li P, Weng M, et al. Nano-vesicles are a potential tool to monitor therapeutic efficacy of carbon ion radiotherapy in prostate cancer[J]. Journal of Biomedical Nanotechnology, 2018, 14(1): 168-178. DOI: 10.1166/jbn.2018.2503.

3.   黄牡丹, 肖崇珺, 郑海清. 外泌体的生物学特性及其微小RNA在脑梗死诊治中的应用[J]. 中华物理医学与康复杂志, 2020, 42(8): 764-768. DOI: 10.3760/cma.j.issn.0254-1424.2020.08.024. [Huang MD, Xiao CJ, Zheng HQ. The biological characteristics of exosomes and the application of microRNA in the diagnosis and treatment of cerebral infarction[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2020, 42(8): 764-768.]

4.   Intasqui P, Bertolla RP, Sadi MV. Prostate cancer proteomics: clinically useful protein biomarkers and future perspectives[J]. Expert Rev Proteomics, 2018, 15(1): 65-79. DOI: 10.1080/14789450.2018.1417846.

5.   雷琳, 马越云, 叶芸, 等. 外泌体miRNAs在前列腺癌细胞激素非依赖转化中的差异表达分析[J]. 中华检验医学杂志, 2019, 42(1): 26-30. DOI: 10.3760/cma.j.issn.1009-9158.2019.01.007. [ Lei L, Ma YY, Ye Y, et al. Differential expression analysis of exosomal miRNAs in hormone-independent transformation of prostate cancer cells[J]. Chinese Journal of Laboratory Medicine, 2019, 42(1): 26-30.]

6.   范维肖, 刁艳君, 马越云, 等. 超速离心法与QIAGEN膜亲和柱法提取前列腺癌细胞培养上清外泌体的方法学比较[J]. 现代检验医学杂志, 2019, 11(3): 6-9. DOI: 10.3969/j.issn.1671-7414.2019.03.002. [Fan WX, Diao YJ, Ma YY, et al. Methodological comparison of ultracentrifugation and QIAGEN membrane affinity column method for extracting exosomes from prostate cancer cell culture supernatant[J]. Journal of Modern Laboratory Medicine, 2019, 11(3): 6-9.]

7.   Ivanova BB, Spiteller M. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment[J]. Journal of Molecular Structure, 2018, 1170(1): 736-741. DOI: 10.1046/j.1464-410x.2000.00867.x.

8.   Luca SD, Bertetto O, Ciccone G, et al. Anxiety levels at diagnosis and after 6 months in localized low-risk prostate cancer who choose radical treatment or active surveillance: results of the start study group[J]. European Urology Supplements, 2018, 17(8): 221-222. DOI: 10.1016/S1569-9056(18)33144-0.

9.   Harrington KJ, Spitzweg C, Bateman AR, et al. Gene therapy for prostate cancer: current status and future prospects[J]. Journal of Urology, 2018, 166(4): 1220-1233. DOI: 10.1016/S0022-5347(05)65742-4.

10.  徐小虎, 丁玉芹, 邰兆琴, 等. MRI联合PSA在前列腺癌诊断和治疗效果评估中的应用[J]. 实用癌症杂志, 2018, 33(12): 152-154. DOI: 10.3969/j.issn.1001- 5930.2018.12.044. [Xu XH, Ding YQ, Tai ZQ, et al. Application of MRI combined with PSA in the diagnosis and treatment of prostate cancer[J]. The Practical Journal of Cancer, 2018, 33(12): 152-154.]

11.  Gandhi J, Zaidi S, Shah J, et al. The evolving role of shear wave elastography in the diagnosis and treatment of prostate cancer[J]. Ultrasound Quarterly, 2018, 34(4): 245-249. DOI: 10.1097/RUQ.0000000000000385.

12.  Sanchis-Bonet A, Recio J, Ortega-Polledo L, et al. Isolation and characterization of urine exosomes for using as diagnostic biomarkers in Prostate Cancer[J]. European Urology Supplements, 2018, 17(14): e2913-e2914. DOI: 10.1016/S1569-9056(18)33770-9.

13.  钦伦秀, 孙豪庭, 王超群. 外泌体在消化系统肿瘤精准诊断与治疗中的应用[J]. 中华消化外科杂志, 2018, 17(4): 333-337. DOI: 10.3760/cma.j.issn. 1673-9752.2018.04.003. [Qin LX, Sun HT, Wang CQ. Exosomes in the precise diagnosis and treatment of digestive system tumors[J]. Chinese Journal of Digestive Surgery, 2018, 17(4): 333-337.]

14.  Deep G, Jain A, Kumar A, et al. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches[J]. Molecular Carcinogenesis, 2020, 59(3): 323-332. DOI: 10.1002/mc.23157.

15.  吴维, 江娟, 吕磊, 等. 外泌体在前列腺癌发展和转移中的作用[J]. 中国现代医学杂志, 2018, 28(6): 38-44. DOI: 10.3969/j.issn.1005-8982.2018.06.007. [Wu W, Jiang J, Lyu L, et al. The role of exosomes in the development and metastasis of prostate cancer[J]. China Journal of Modern Medicine, 2018, 28(6): 38-44.]

16.  Lin CJ, Dang A, Hernandez E, et al. Abstract A080: Caveolin-1 detected in tumor-derived exosomes induces cancer stem cell phenotypes in castration-resistant prostate cancer[J]. Cancer Research, 2018, 78(16-Suppl): A080. DOI: 10.1158/1538-7445.PRCA2017-A080.

17.  彭一琳, 倪煦东, 曹帆, 等. 前列腺癌细胞来源的外泌体诱导巨噬细胞极化[J]. 中国生物化学与分子生物学报, 2019, 35(2): 179-186. DOI: 10.13865/j.cnki.cjbmb. 2019.02.09. [Peng YL, Ni XD, Cao F, et al. Exosomes derived from prostate cancer cells induce macrophage polarization[J]. Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(2): 179-186.]

18.  Menegaux F, Rebillard X, Tretarre B, et al. Impact of prostate cancer diagnosis and type of treatment on the health-related quality of life and urological dysfunction at 3 years: a case-control study[J]. Journal of Clinical Oncology, 2018, 36(15_suppl): e17084-e17084. DOI: 10.1200/JCO.2018.36.15_suppl.e17084.

19.  Chen Y, Mathy NW, Hongda LU. The role of VEGF in the diagnosis and treatment of malignant pleural effusion in patients with non‑small cell lung cancer (Review)[J]. Molecular Medicine Reports, 2018, 17(6): 8019-8030. DOI: 10.3892/mmr.2018.8922.

20.  南阿妮, 刁艳君, 杨柳, 等. 尿液外泌体提取优化及冷冻对外泌体RNA含量的影响[J]. 临床检验杂志, 2019, 37(5): 325-330. DOI: 10.13602/j.cnki.jcls.2019.05.02. [Nan AN, Diao YJ, Yang L, et al. Optimization of urine exosomes extraction and the effect of frozen exosomes rna content[J]. Journal of Clinical Laboratory Medicine, 2019, 37(5): 325-330.]

21.  Taneja, Samir S. Re: chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED Trial[J]. J Urol, 2018, 195(1): 94-96. DOI: 10.1016/j.juro.2018.05.046.

22.  Catton CN, Lukka H, Martin J. Prostate cancer radiotherapy: an evolving paradigm[J]. J Clin Oncol. 2018, 36(29): 2909-2913. DOI: 10.1200/JCO.2018.79.3257.

23.  曾昭穆, 温稀超, 张雨豪, 等. 外泌体介导miRNAs在脑胶质瘤治疗中的作用与应用[J]. 中国组织工程研究, 2020, 24(25): 4073-4080. DOI: 10.3969/j.issn.2095- 4344.2088. [Zeng ZM, Wen XC, Zhang YH, et al. The role and application of exosomes-mediated miRNAs in the treatment of glioma[J]. Chinese Tissue Engineering Research, 2020, 24(25): 4073-4080.]

24.  Dall'Era MA, Davies BJ, Eggener S. Active surveillance for prostate cancer[J]. Translational Andrology and Urology, 2018, 7(2): 195-196. DOI: 10.21037/tau.2018.03.03.

25.  Llop E, Ferrer-Batallé M, Barrabés S, et al. Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes: erratum[J]. Theranostics, 2018, 8(3): 746-748. DOI: 10.7150/thno.23906.

26.  Faria R, Soares MO, Spackman E, et al. Optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the prostate MR imaging study (PROMIS)[J]. European Urology, 2018, 73(1): 23-30. DOI: 10.1016/j.eururo.2017.08.018.

27.  Taneja, Samir S. Re: optimising the diagnosis of prostate cancer in the era of multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the prostate MR imaging study (PROMIS)[J]. J Urol, 2018, 199(6): 1397-1398. DOI: 10.1016/j.juro.2018.03.027.

28.  Yamamoto R, Osawa T, Sasaki Y, et al. Overexpression of p54nrb/NONO induces differential EPHA6 splicing and contributes to castration-resistant prostate cancer growth[J]. Oncotarget, 2018, 9(12): 10510-10524. DOI: 10.18632/oncotarget.24063.

29.  Yan Y, An J, Yang Y, et al. Dual inhibition of AKT-mTOR and AR signaling by targeting HDAC3 in PTEN- or SPOP-mutated prostate cancer[J]. EMBO Molecular Medicine, 2018, 10(4): 1759-1768. DOI: 10.15252/emmm.201708478.

30.  Abel SDA, Baird SK. Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: Considerations for the choice of cell viability assay[J]. Food Chemistry, 2018, 241: 70-78. DOI: 10.1016/j.food chem.2017.08.083.