Welcome to visit Zhongnan Medical Journal Press Series journal website!

Progress of phosphorylated proteomics in breast cancer

Published on Dec. 05, 2020Total Views: 5455 timesTotal Downloads: 1875 timesDownloadMobile

Author: Yu-Jiao DENG 1 Na LI 1 Wen-Ge ZHU 2 Zhi-Jun DAI 1, 3*

Affiliation: 1. Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China 2. Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC 20052, USA 3. Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China

Keywords: Phosphorylated proteomics Breast cancer Carcinogenesis Treatment Prognosis

DOI: 10.12173/j.issn.1004-5511.2020.06.05

Reference: Deng YJ, Li N, Zhu WG, Dai ZJ. Progress of phosphorylated proteomics in breast cancer[J]. Yixue Xinzhi Zazhi, 2020, 30(6): 449-456. DOI: 10.12173/j.issn.1004-5511.2020.06.05.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

With the development of genomics, proteomics and transcriptomics, tumor research is becoming more and more systematic and in-depth. Compared with the genome, the proteome is more complex, more active and closer to the essence of life. Post-translational modification of proteins is a hot topic in proteomics, among which phosphorylation is the most common and widely studied. With the rapid development of proteomics technology, the application of proteomics to the discovery of specific markers of malignant tumors, the establishment of diagnostic models of proteins, treatment and prognosis, drug resistance and other aspects of the study gradually increased. This article reviewed the progress of phosphorylated proteomics in breast cancer.

Full-text
Please download the PDF version to read the full text: download
References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac. 21590.

2. Li N, Deng Y, Zhou L, et al. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the Global Burden of Disease Study 2017[J]. J Hematol Oncol, 2019, 12(1): 140. DOI: 10.1186/s13045-019-0828-0.

3. Colditz GA, Bohlke K. Priorities for the primary prevention of breast cancer[J]. CA Cancer J Clin, 2014, 64(3): 186-194. DOI: 10.3322/caac.21225.

4. Liu Y, Beyer A, Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance[J]. Cell, 2016, 165(3): 535-550. DOI: 10.1016/j.cell.2016.03.014.

5. Pieroni L, Iavarone F, Olianas A, et al. Enrichments of post-translational modifications in proteomic studies[J]. J Sep Sci, 2020, 43(1): 313-336. DOI: 10.1002/jssc.201900804.

6. Messana I, Cabras T, Iavarone F, et al. Unraveling the different proteomic platforms[J]. J Sep Sci, 2013, 36(1): 128-139. DOI: 10.1002/jssc.201200830.

7. Humphrey SJ, James DE, Mann M. Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation[J]. Trends Endocrinol Metab, 2015, 26(12): 676-687. DOI: 10.1016/j.tem.2015.09.013.

8. Sabidó E, Selevsek N, Aebersold R. Mass spectrometry-based proteomics for systems biology[J]. Curr Opin Biotechnol, 2012, 23(4): 591-597. DOI: 10.1016/j.copbio.2011.11.014.

9. Schaffer LV, Millikin RJ, Miller RM, et al. Identification and Quantification of Proteoforms by Mass Spectrometry[J].  Proteomics, 2019, 19(10): e1800361. DOI: 10.1002/pmic.201800361.

10.    Low TY, Mohtar MA, Lee PY, et al. Widening the Bottleneck of Phosphoproteomics: Evolving Strategies for Phosphopeptide Enrichment[J]. Mass Spectrom Rev, 2020. DOI: 10.1002/mas.21636.

11.    Vyse S, Desmond H, Huang PH. Advances in mass spectrometry based strategies to study receptor tyrosine kinases[J]. IUCrJ, 2017, 4(2): 119-130. DOI: 10.1107/S2052252516020546.

12.    Polat AN, Özlü N. Towards single-cell LC-MS phosphoproteomics[J]. Analyst, 2014, 139(19): 4733-4749. DOI: 10.1039/c4an00463a.

13.    Burlingame AL. Mass spectrometry-based detection and assignment of protein posttranslational modifications[J]. ACS Chem Biol, 2015, 10(1): 63-71. DOI: 10.1021/cb500904b.

14.    Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics[J]. Nat Rev Mol Cell Biol, 2010, 11(6): 427-439. DOI: 10.1038/nrm2900.

15.    Frączyk T, Rode W. Phosphorylation of basic amino acid residues in proteins: important but easily missed[J]. Acta Biochim Pol, 2011, 58(2): 137-148.

16.    Jan, Fíla, David, et al. Enrichment techniques employed in phosphoproteomics[J]. Amino Acids, 2012, 43(3): 1025-1047. DOI: 10.1007/s00726-011-1111-z.

17.    Rosenqvist H, Ye J, Jensen ON. Analytical strategies in mass spectrometry-based phosphoproteomics[J]. Methods Mol Biol, 2011, 753: 183-213. DOI: 10.1007/978-1-61779 -148-2_13.

18.    von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues[J]. Expert Rev Proteomics, 2015, 12(5): 469-487. DOI: 10.1586/14789450.2015.1078730.

19.    牟永莹,顾培明,马博,等.基于质谱的定量蛋白质组学技术发展现状[J].生物技术通报, 2017, 33(9): 73-84. DOI: 10.13560/j.cnki.biotech.bull.1985.2017-0343. [Mou YY, Gu PM, Ma B, ET AL. Advancements in Quantitative Proteomics Technologies Based on Mass Spectrometry[J]. Biotechnology Bulletin, 2017, 33(9): 73-84.]

20.    Grant NJ, Coates PJ, Woods YL, et al. Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis[J]. BMC Cancer, 2015, 15: 885. DOI: 10.1186/s12885-015-1691-1.

21.    Wang S, Singh SK, Katika MR, et al. High Throughput Chemical Screening Reveals Multiple Regulatory Proteins on FOXA1 in Breast Cancer Cell Lines[J]. Int J Mol Sci, 2018, 19(12): 4123. DOI: 10.3390/ijms19124123.

22.    Concolino A, Olivo E, Tammè L, et al. Proteomics Analysis to Assess the Role of Mitochondria in BRCA1-Mediated Breast Tumorigenesis[J]. Proteomes, 2018, 6(2): 16. DOI: 10.3390/proteomes6020016.

23.    Willibald M, Bayer G, Stahlhut V, et al. Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells[J]. Oncotarget, 2017, 8(42):72480-72493. DOI: 10.18632/oncotarget.19819.

24.    McCann JL, Klein MM, Leland EM, et al. The DNA deaminase APOBEC3B interacts with the cell-cycle protein CDK4 and disrupts CDK4-mediated nuclear import of Cyclin D1[J]. J Biol Chem, 2019, 294(32): 12099-12111. DOI: 10.1074/jbc.RA119.008443.

25.    Calderón-González KG, Valero Rustarazo ML, Labra-Barrios ML, et al. Determination of the protein expression profiles of breast cancer cell lines by quantitative proteomics using iTRAQ labelling and tandem mass spectrometry[J]. J Proteomics, 2015, 124: 50-78. DOI: 10.1016/j.jprot.2015. 04.018.

26.    Wu X, Zahari MS, Ma B, et al. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways[J]. Oncotarget, 2015, 6(30): 29143-29160. DOI: 10.18632/oncotarget.5020.

27.    Holcakova J, Nekulova M, Orzol P, et al. ΔNp63 activates EGFR signaling to induce loss of adhesion in triple-negative basal-like breast cancer cells[J]. Breast Cancer Res Treat, 2017, 163(3): 475-484. DOI: 10.1007/s10549-017-4216-6.

28.    McGrail DJ, Federico L, Li Y, et al. Multi-omics analysis reveals neoantigen-independent immune cell infiltration in copy-number driven cancers[J]. Nat Commun, 2018, 9(1): 1317. DOI: 10.1038/s41467-018-03730-x.

29.    Locard-Paulet M, Lim L, Veluscek G, et al. Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration[J]. Sci Signal, 2016, 9(414): ra15. DOI: 10.1126/scisignal.aac5820.

30.    Koh M, Yong HY, Kim ES, et al. A novel role for flotillin-1 in H-Ras-regulated breast cancer aggressiveness[J]. Int J Cancer, 2016, 138(5): 1232-1245. DOI: 10.1002/ijc.29869.

31.    Law ME, Ferreira RB, Davis BJ, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment[J]. Breast Cancer Res, 2016, 18(1): 80. DOI: 10.1186/s13058-016-0741-1.

32.    王银,徐平. 乳腺癌磷酸化蛋白质组学研究进展[J]. 中华乳腺病杂志(电子版),2020,14(1): 50-53. DOI:10.3877/cma.j.issn.1674-0807.2020.01.012. [Wang Y, Xu P. Research progress of phosphorylated proteomics of breast cancer[J]. Chinese Journal of Breast Disease(Electronic Version), 2020, 14(1): 50-53.]

33.    Urasaki Y, Fiscus RR, Le TT. Detection of the Cell Cycle-Regulated Negative Feedback Phosphorylation of Mitogen-Activated Protein Kinases in Breast Carcinoma Using Nanofluidic Proteomics[J]. Sci Rep, 2018, 8(1): 9991. DOI: 10.1038/s41598-018-28335-8.

34.    Chen Y, Hoover ME, Dang X, et al. Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence[J]. Mol Cell Proteomics, 2016, 15(3): 818-833. DOI: 10.1074/mcp.M114.046441.

35.    Chen IH, Xue L, Hsu CC, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer[J]. Proc Natl Acad Sci USA, 2017, 114(12): 3175-3180. DOI: 10.1073/pnas.1618088114.

36.    Roth L, Srivastava S, Lindzen M, et al. SILAC identifies LAD1 as a filamin-binding regulator of actin dynamics in response to EGF and a marker of aggressive breast tumors[J]. Sci Signal, 2018, 11(515): eaan0949. DOI: 10.1126/scisignal.aan0949.

37.    Ahmad DA, Negm OH, Alabdullah ML, et al. Clinicopathological and prognostic significance of mitogen-activated protein kinases (MAPK) in breast cancers[J]. Breast Cancer Res Treat, 2016, 159(3): 457-467. DOI: 10.1007/s10549-016-3967-9.

38.    Cuesta R, Gritsenko MA, Petyuk VA, et al. Phosphoproteome Analysis Reveals Estrogen-ER Pathway as a Modulator of mTOR Activity Via DEPTOR[J]. Mol Cell Proteomics, 2019, 18(8): 1607-1618. DOI: 10.1074/mcp.RA119.001506.

39.    Wu X, Zahari MS, Renuse S, et al. Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer[J]. Mol Cell Proteomics, 2015, 14(11):2887-2900. DOI: 10.1074/mcp.M115.050484.

40.    Cheng F, Zhao J, Hanker AB, et al. Transcriptome- and Proteome-Oriented Identification of Dysregulated Eif4g, Stat3, and Hippo Pathways Altered by Pik3ca (H1047r) in Her2/Er-Positive Breast Cancer[J]. Breast Cancer Res Treat, 2016, 160(3):457-474. DOI: 10.1007/s10549-016-4011-9.

41.    Nunes J, Zhang H, Angelopoulos N, et al. ATG9A loss confers resistance to trastuzumab via c-Cbl mediated Her2 degradation[J]. Oncotarget, 2016, 7(19): 27599-27612. DOI: 10.18632/oncotarget.8504.

42.    Chang Y, Park KH, Lee JE, et al. Phosphoproteomic analysis reveals PAK2 as a therapeutic target for lapatinib resistance in HER2-positive breast cancer cells[J]. Biochem Biophys Res Commun, 2018, 505(1):187-193. DOI: 10.1016/j.bbrc. 2018.09.086.

43.    Guo L, Xiao Y, Fan M, et al. Profiling global kinome signatures of the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted proteomics[J]. J Proteome Res, 2015, 14(1): 193-201. DOI: 10.1021/pr500919w.

44.    Heerma van Voss MR, Vesuna F, Bol GM, et al. Targeting mitochondrial translation by inhibiting DDX3: a novel radiosensitization strategy for cancer treatment[J]. Oncogene, 2018, 37(1): 63-74. DOI: 10.1038/onc.2017.308.