Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress on reversing tumor resistance based on the epigenetics of drug metabolizing enzymes and transporters

Published on Dec. 05, 2020Total Views: 15199 timesTotal Downloads: 2009 timesDownloadMobile

Author: Xiao-Li ZHENG 1, 2 Jia-Qi WANG 2, 3 Lu-Shan YU 2, 3 Su ZENG 2, 3

Affiliation: 1. National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China 2. Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang University, Hangzhou 310058, China 3. Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou 310058, China

Keywords: Tumor Drug resistance Drug metabolizing enzymes Drug transporter Epigenetics

DOI: 10.12173/j.issn.1004-5511.2020.06.06

Reference: Zheng XL, Wang JQ, Yu LS, Zeng S. Research progress on reversing tumor resistance based on the epigenetics of drug metabolizing enzymes and transporters[J]. Yixue Xinzhi Zazhi, 2020, 30(6): 457-463. DOI: 10.12173/j.issn.1004-5511.2020.06.06.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

The molecular mechanisms related to drug metabolism of tumor resistance include drug inactivation, increase of drug efflux, and decrease of drug uptake, The epigenetic regulation mechanism of drug metabolizing enzymes and drug transporters, such as DNA Methylation, histone modification and non-coding RNA may design therapies aimed at preventing or reversing drug resistance. This paper reviews epigenetic changes of drug-metabolizing enzymes and drug transporters to overcome tumor multidrug resistance.

Full-text
Please download the PDF version to read the full text: download
References

1. Wang J, Yu L, Jiang H, et al. Epigenetic Regulation of Differentially Expressed Drug-Metabolizing Enzymes in Cancer[J]. Drug Metab Dispos, 2020, 48(9): 759-768. DOI: 10.1124/dmd.120.000008. 

2. Liu Y, Zheng X, Yu Q, et al. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin[J]. Sci Transl Med, 2016, 8(348): 348ra97. DOI: 10.1126/scitranslmed.aaf3124.

3. Ramsahoye BH, Biniszkiewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a[J]. Proc Natl Acad Sci USA, 2000, 97(10): 5237-5242. DOI: 10.1073/pnas.97.10.5237. 

4. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression[J]. Curr Opin Genet Dev, 1993, 3(2): 226-231. DOI: 10.1016/0959-437x(93)90027-m.

5. Prokhortchouk E, Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs?[J]. Oncogene, 2002, 21(35): 5394-5399. DOI: 10.1038/sj.onc. 1205631. 

6. Ito S, D'Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]. Nature, 2010, 466(7310): 1129-1133. DOI: 10.1038/nature09303.

7. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics[J]. Cell, 2011, 146(6): 866-872. DOI: 10.1016/j.cell.2011.08.042.

8. Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2[J]. Nature, 2010, 468(7325): 839-843. DOI: 10.1038/nature09586.

9. Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol, 2005, 6(11): 838-849. DOI: 10.1038/nrm1761. 

10. Ruthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark[J]. Mol Cell, 2007, 25(1): 15-30. DOI: 10.1016/j.molcel.2006.12.014. 

11. Hampsey M, Reinberg D. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation[J]. Cell, 2003, 113(4): 429-432. DOI: 10.1016/s0092-8674(03)00360-x.

12. Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature, 2000, 406(6796): 593-599.  DOI: 10.1038/35020506.  

13. Mattick JS. The functional genomics of noncoding RNA[J]. Science, 2005, 309(5740): 1527-1528. DOI: 10.1126/science.1117806.

14. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals[J]. Nat Rev Mol Cell Biol, 2009, 10(2): 126-139.  DOI: 10.1038/nrm2632. 

15. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data[J]. Nucleic Acids Res, 2011, 39: 152-157. DOI: 10.1093/nar/gkq1027. 

16. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res, 2009, 19(1): 92-105. DOI: 10.1101/gr.082701.108.

17. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Gene, 2012, 13(4): 271-282.  DOI: 10.1038/nrg3162. 

18. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay[J]. Nat Rev Gene, 2011, 12(2): 99-110. DOI: 10.1038/nrg2936.

19. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance[J]. Oncogene, 2003, 22(47): 7369-7375. DOI: 10.1038/sj.onc.1206940.

20. Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for cancer therapy[J]. J Clin Oncol, 2005, 23(1): 205-229. DOI: 10.1200/JCO.2005.02.120.

21. Gagnon JF, Bernard O, Villeneuve L, et al. Irinotecan inactivation is modulated by epigenetic silencing of UGT1A1 in colon cancer[J]. Clin Cancer Rev, 2006, 12(6): 1850-1858.  DOI: 10.1158/1078-0432.CCR-05-2130. 

22. Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov, 2006, 5(3): 219-234. DOI: 10.1038/nrd1984.

23. Chang G, Roth CB. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters[J]. Science, 2001, 293(5536): 1793-1800. DOI: 10.1126/science.293.5536.1793.

24. Sauna ZE, Ambudkar SV. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein the two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes[J]. J Biol Chem, 2001, 276(15): 11653-11661. DOI: 10.1074/jbc.M011294200. 

25. Shukla S, Ohnuma S, Ambudkar SV. Improving cancer chemotherapy with modulators of ABC drug transporters[J]. Curr Drug Targets, 2011, 12(5): 621-630. DOI: 10.2174/ 138945011795378540. 

26. Abolhoda A, Wilson AE, Ross H, et al. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin[J]. Clin Cancer Res, 1999, 5(11): 3352-3356. 

27. Kantharidis P, El-Osta A, deSilva M, et al. Altered methylation of the human MDR1 promoter is associated with acquired multidrug resistance[J]. Clin Cancer Res, 1997, 3(11): 2025-2032.

28. Desiderato L, Davey MW, Piper AA. Demethylation of the human MDR1 5' region accompanies activation of P-glycoprotein expression in a HL60 multidrug resistant subline[J]. Somat Cell Mol Genet, 1997, 23(6): 391-400. DOI: 10.1007/BF02673749.

29. El-Osta A, Kantharidis P, Zalcberg JR, et al. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation[J]. Mol Cell Biol, 2002, 22(6): 1844-1857. DOI: 10.1128/mcb.22.6.1844-1857.2002. 

30. Jin S, Scotto KW. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y[J]. Mol Cell Biol, 1998, 18(7): 4377-4384. DOI: 10.1128/mcb.18.7.4377.

31. Kohno K, Sato S, Takano H, et al. The direct activation of human multidrug resistance gene (MDR1) by anticancer agents[J]. Biochem Biophys Res Commun, 1989, 165(3): 1415-1421. DOI: 10.1016/0006-291x(89)92761-7.

32. Hu XF, Slater A, Wall DM, et al. Rapid up-regulation of mdr1 expression by anthracyclines in a classical multidrug-resistant cell line. Br J Cancer, 1995, 71(5): 931-936. DOI: 10.1038/bjc.1995.180. 

33. Zheng X, Liu Y, Yu Q, et al. Response to Comment on "Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin"[J]. Sci Transl Med, 2017, 9(391): eaam6298. DOI: 10.1126/scitranslmed.aam6298.

34. Zhu Q, Yu L, Qin Z, et al. Regulation of OCT2 transcriptional repression by histone acetylation in renal cell carcinoma[J]. Epigenetics 2019, 14(8): 791-803. DOI: 10.1080/15592294.2019.1615354. 

35. Yu Q, Liu Y, Zheng X, et al. Histone H3 Lysine 4 Trimethylation, Lysine 27 Trimethylation, and Lysine 27 Acetylation Contribute to the Transcriptional Repression of Solute Carrier Family 47 Member 2 in Renal Cell Carcinoma[J]. Drug Metab Dispos, 2017, 45(1): 109-117. DOI: 10.1124/dmd.116.073734. 

36. 曾苏, 刘彦卿, 郑小丽, 等.地西他滨和奥沙利铂在制备治疗肾细胞癌组合药物中应用: 201410417386.6 [P]. 2014-11-19. [Zeng S, Liu YQ, Zheng XL, et al. Application of decitabine and oxaliplatin in preparation of combined medicine for treating renal cell carcinoma: 201410417386.6[P]. 2014-11-19. ]

37. Chen L, Wang Z, Xu Q, et al. The failure of DAC to induce OCT2 expression and its remission by hemoglobin-based nanocarriers under hypoxia in renal cell carcinoma[J]. Theranostics, 2020, 10(8): 3562-3578. DOI: 10.7150/thno.39944. 

38. Zhou Y, Ye C, Lou Y, et al. Epigenetic Mechanisms Underlying Organic Solute Transporter β Repression in Colorectal Cancer[J]. Mol Pharmacol, 2020, 97(4): 259-266.DOI: 10.1124/mol.119.118216.

39. Ye C, Han K, Lei J, et al. Inhibition of histone deacetylase 7 reverses concentrative nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state[J]. Br J Pharmacol, 2018, 175(22): 4209-4217. DOI: 10.1111/bph.14467.

40. Chen L, Chen L, Qin Z, et al. Upregulation of miR-489-3p and miR-630 inhibits oxaliplatin uptake in renal cell carcinoma by targeting OCT2[J]. Acta Pharm Sin B, 2019, 9(5): 1008-1020. DOI: 10.1016/j.apsb.2019.01.002.

41. 陈梦娇,王华,陈锦超,等.地西他滨诱导miR-200c/141表达抑制肾癌细胞侵袭迁移[J].中国现代应用药学, 2019, 36(13): 1601-1607. DOI: 10.13748/j.cnki.issn1007-7693.2019.13.001. [Chen MJ, Wang H, Chen JC, et al. Decitabine Inhibit Invasion and Migration Ability of Renal Cell Carcinoma Cells by Up-regulating MiR-200c/141[J]. Chinese Journal of Modern Applied Pharmacy, 2019, 36(13): 1601-1607.]

42. Gao Z, Chen M, Tian X, et al. A novel human lncRNA SANT1 cis-regulates the expression of SLC47A2 by altering SFPQ/E2F1/ HDAC1 binding to the promoter region in renal cell carcinoma[J]. RNA Biol, 2019, 16(7): 940-949. DOI: 10.1080/15476286.2019.1602436. 

43. Selvakumaran M, Pisarcik DA, Bao R, et al. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines[J]. Cancer Res, 2003, 63(6): 1311-1316.

44. Bonanno L, Favaretto A, Rosell R. Platinum drugs and DNA repair mechanisms in lung cancer[J]. Anticancer Res, 2014, 34(1): 493-501.

45. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents[J]. N Engl J Med, 2000, 343(19): 1350-1354. DOI: 10.1056/NEJM200011093431901. 

46. Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5‐fluorouracil in colorectal cancer cell lines[J]. Int J Cancer, 2003, 106(1): 66-73. DOI: 10.1002/ijc.11176.

47. Plumb JA, Strathdee G, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter[J]. Cancer Res, 2000, 60(21): 6039-6044.

48. Yin J, Sun W, Li F, et al. VARIDT 1.0: variability of drug transporter database[J]. Nucleic Acids Res, 2020, 48(D1): D1042-D1050.  DOI: 10.1093/nar/gkz779.

49. Yin J, Sun W, Li F, et al. VARIDT 1.0: variability of drug transporter database[J]. Nucleic acids research, 2020, 48(D1): D1042-D1050. DOI: 10.1093/nar/gkz779.

50. Yin J, Li F, Zhou Y, et al. INTEDE: interactome of drug-metabolizing enzymes[J]. Nucleic Acids Research, 2020. DOI: 10.1093/nar/gkaa755.