Welcome to visit Zhongnan Medical Journal Press Series journal website!

The role of zinc homeostasis in prostate diseases and potential mechanisms

Published on Jul. 25, 2025Total Views: 84 timesTotal Downloads: 39 timesDownloadMobile

Author: HAN Yutong 1, 2 FAN Jiuming 1, 2 WANG Tiankun 1, 2 QI Zihao 1, 2 ZHANG Yuanyuan 2 HOU Junqing 3, 4

Affiliation: 1. School of Clinical Medicine, Henan University, Kaifeng 475400, Henan Province, China 2. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 3. Department of Urology, Kaifeng 155 Hospital, China Rong Tong Medical Healthcare Group Co. Ltd., Kaifeng 475400, Henan Province, China 4. Henan Engineering Research Center of Prostate Disease Prevention and Diagnosis, Kaifeng 475400, Henan Province, China

Keywords: Zinc Zinc Homeostasis Prostatic diseases Prostate cancer Benign prostatic hyperplasia

DOI: 10.12173/j.issn.1004-5511.202502119

Reference: Han YT, Fan JM, Wang TK, Qi ZH, Zhang YY, Hou JQ. The role of zinc homeostasis in prostate diseases and potential mechanisms[J]. Yixue Xinzhi Zazhi, 2025, 35(7): 846-854. DOI: 10.12173/j.issn.1004-5511.202502119. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Zinc is an essential trace element in the human body, participating in various critical physiological functions and being highly concentrated in the prostate gland. Studies have shown that prostate diseases might be associated with zinc imbalance. Investigating the regulatory mechanisms and dynamic patterns of zinc homeostasis in prostate diseases holds significant importance for exploring the pathogenesis, progression mechanisms, and zinc homeostasis-based prevention and treatment strategies for prostate disorders. Building on a synthesis of previous evidence, this review elaborates on the maintenance processes and key regulatory factors of zinc homeostasis in the human body, and provides an in-depth analysis of zinc's role in the development and progression of prostate diseases, along with potential underlying biological mechanisms.

Full-text
Please download the PDF version to read the full text: download
References

1.Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.

2.Liu J, Dong L, Zhu Y, et al. Prostate cancer treatment-China's perspective[J]. Cancer Lett, 2022, 550: 215927. DOI: 10.1016/j.canlet.2022.215927.

3.Chen B, Yu P, Chan WN, et al. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9(1): 6. DOI: 10.1038/s41392-023-01679-y.

4.Lowe NM, Gupta S. Food fortification programmes and zinc deficiency[J]. Nat Food, 2024, 5(7): 546-547. DOI: 10.1038/s43016-024-01003-z.

5.Vallee BL, Falchuk KH. The biochemical basis of zinc physiology[J]. Physiol Rev, 1993, 73(1): 79-118. DOI: 10.1152/physrev.1993.73.1.79.

6.Ma T, Xie W, Xu Z, et al. Estrogen-related receptor alpha (ERRα) controls the stemness and cellular energetics of prostate cancer cells via its direct regulation of citrate metabolism and zinc transportation[J]. Cell Death Dis, 2025, 16(1): 154. DOI: 10.1038/s41419-025-07460-z.

7.Kiouri DP, Chasapis CT, Mavromoustakos T, et al. Zinc and its binding proteins: essential roles and therapeutic potential[J]. Arch Toxicol, 2025, 99(1): 23-41. DOI: 10.1007/s00204-024-03891-3.

8.Cragg RA, Phillips SR, Piper JM, et al. Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation[J]. Gut, 2005, 54(4): 469-478. DOI: 10.1136/gut.2004.041962.

9.Krebs NF. Overview of zinc absorption and excretion in the human gastrointestinal tract[J]. J Nutr, 2000, 130(5S Suppl): 1374s-1377s. DOI: 10.1093/jn/130.5.1374S.

10.Stiles LI, Ferrao K, Mehta KJ. Role of zinc in health and disease[J]. Clin Exp Med, 2024, 24(1): 38. DOI: 10.1007/s10238-024-01302-6.

11.Maares M, Haase H. A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models[J]. Nutrients, 2020, 12(3): 762. DOI: 10.3390/nu12030762.

12.Wang F, Kim BE, Petris MJ, et al. The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells[J]. J Biol Chem, 2004, 279(49): 51433-51441. DOI: 10.1074/jbc.M408361200.

13.Girijashanker K, He L, Soleimani M, et al. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter[J]. Mol Pharmacol, 2008, 73(5): 1413-1423. DOI: 10.1124/mol.107.043588.

14.Mcmahon RJ, Cousins RJ. Mammalian zinc transporters[J]. J Nutr, 1998, 128(4): 667-670. DOI: 10.1093/jn/128.4.667.

15.Geiser J, Venken KJ, De Lisle RC, et al. A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity[J]. PLoS Genet, 2012, 8(6): e1002766. DOI: 10.1371/journal.pgen.1002766.

16.He L, Girijashanker K, Dalton TP, et al. ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties[J]. Mol Pharmacol, 2006, 70(1): 171-180. DOI: 10.1124/mol.106.024521.

17.Bosomworth HJ, Thornton JK, Coneyworth LJ, et al. Efflux function, tissue-specific expression and intracellular trafficking of the Zn transporter ZnT10 indicate roles in adult Zn homeostasis[J]. Metallomics, 2012, 4(8): 771-779. DOI: 10.1039/c2mt20088k.

18.Kambe T, Tsuji T, Hashimoto A, et al. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism[J]. Physiol Rev, 2015, 95(3): 749-784. DOI: 10.1152/physrev.00035.2014.

19.Liuzzi JP, Bobo JA, Lichten LA, et al. Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis[J]. Proc Natl Acad Sci U S A, 2004, 101(40): 14355-14360. DOI: 10.1073/pnas.0406216101.

20.Wang X, Gao H, Wu W, et al. The zinc transporter Slc39a5 controls glucose sensing and insulin secretion in pancreatic β-cells via Sirt1- and Pgc-1α-mediated regulation of Glut2[J]. Protein Cell, 2019, 10(6): 436-449. DOI: 10.1007/s13238-018-0580-1.

21.Trumbo P, Yates AA, Schlicker S, et al. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[J]. J Am Diet Assoc, 2001, 101(3): 294-301. DOI: 10.1016/S0002-8223(01)00078-5.

22.Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: from biological functions to therapeutic potential[J]. Int J Mol Sci, 2023, 24(5): 4822. DOI: 10.3390/ijms24054822.

23.Li X, Han M, Zhang H, et al. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma[J]. Biomark Res, 2022, 10(1): 2. DOI: 10.1186/s40364-021-00345-1.

24.Pinter TB, Stillman MJ. Putting the pieces into place: properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase[J]. Biochem J, 2015, 471(3): 347-356. DOI: 10.1042/bj20150676.

25.Yin S, Duan M, Fang B, et al. Zinc homeostasis and regulation: Zinc transmembrane transport through transporters[J]. Crit Rev Food Sci Nutr, 2023, 63(25): 7627-7237. DOI: 10.1080/10408398.2022.2048292.

26.Gioeli D. Signal transduction in prostate cancer progression[J]. Clin Sci (Lond), 2005, 108(4): 293-308. DOI: 10.1042/cs20040329.

27.Kim YR, Kim IJ, Kang TW, et al. HOXB13 downregulates intracellular zinc and increases NF-κB signaling to promote prostate cancer metastasis[J]. Oncogene, 2014, 33(37): 4558-4567. DOI: 10.1038/onc.2013.404.

28.Han YC, Zheng ZL, Zuo ZH, et al. Metallothionein 1 h tumour suppressor activity in prostate cancer is mediated by euchromatin methyltransferase 1[J]. J Pathol, 2013, 230(2): 184-193. DOI: 10.1002/path.4169.

29.Zuo Z, Billings T, Walker M, et al. On the dependent recognition of some long zinc finger proteins[J]. Nucleic Acids Res, 2023, 51(11): 5364-5376. DOI: 10.1093/nar/gkad207.

30.Yang Q, Lang C, Wu Z, et al. MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 391. DOI: 10.1186/s13046-019-1374-x.

31.Zheng C, Wu H, Jin S, et al. Roles of Myc-associated zinc finger protein in malignant tumors[J]. Asia Pac J Clin Oncol, 2022, 18(6): 506-514. DOI: 10.1111/ajco.13748.

32.Jiang X, Zhang C, Qi S, et al. Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress[J]. Oncotarget, 2016, 7(51): 84893-84906. DOI: 10.18632/oncotarget.12753.

33.Xu X, Zhu Z, Xu Y, et al. Effects of zinc finger protein 403 on the proliferation, migration and invasion abilities of prostate cancer cells[J]. Oncol Rep, 2020, 44(6): 2455-2464. DOI: 10.3892/or.2020.7786.

34.Franklin RB, Feng P, Milon B, et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer[J]. Mol Cancer, 2005, 4: 32. DOI: 10.1186/1476-4598-4-32.

35.Desouki MM, Geradts J, Milon B, et al. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands[J]. Mol Cancer, 2007, 6: 37. DOI: 10.1186/1476-4598-6-37.

36.Thomas P, Pang Y, Dong J, et al. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis[J]. Endocrinology, 2014, 155(11): 4250-4265. DOI: 10.1210/en.2014-1201.

37.Henshall SM, Afar DE, Rasiah KK, et al. Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer[J]. Oncogene, 2003, 22(38): 6005-6012. DOI: 10.1038/sj.onc.1206797.

38.Wei H, Desouki MM, Lin S, et al. Differential expression of metallothioneins (MTs) 1, 2, and 3 in response to zinc treatment in human prostate normal and malignant cells and tissues[J]. Mol Cancer, 2008, 77. DOI: 10.1186/1476-4598-7-7.

39.Difeo A, Martignetti JA, Narla G. The role of KLF6 and its splice variants in cancer therapy[J]. Drug Resist Updat, 2009, 12(1-2): 1-7. DOI: 10.1016/j.drup.2008.11.001.

40.Subramaniam M, Hawse JR, Rajamannan NM, et al. Functional role of KLF10 in multiple disease processes[J]. Biofactors, 2010, 36(1): 8-18. DOI: 10.1002/biof.67.

41.Antao AM, Ramakrishna S, Kim KS. The role of Nkx3.1 in cancers and stemness[J]. Int J Stem Cells, 2021, 14(2): 168-179. DOI: 10.15283/ijsc20121.

42.Song Y, Xu Y, Pan C, et al. The emerging role of SPOP protein in tumorigenesis and cancer therapy[J]. Mol Cancer, 2020, 19(1): 2. DOI: 10.1186/s12943-019-1124-x.

43.Vickram S, Rohini K, Srinivasan S, et al. Role of zinc (Zn) in human reproduction: a journey from initial spermatogenesis to childbirth[J]. Int J Mol Sci, 2021, 22(4): 2188. DOI: 10.3390/ijms22042188.

44.Chasapis CT, Ntoupa PA, Spiliopoulou CA, et al. Recent aspects of the effects of zinc on human health[J]. Arch Toxicol, 2020, 94(5): 1443-1460. DOI: 10.1007/s00204-020-02702-9.

45.Zhao J, Wu Q, Hu X, et al. Comparative study of serum zinc concentrations in benign and malignant prostate disease: a systematic review and Meta-analysis[J]. Sci Rep, 2016, 6: 25778. DOI: 10.1038/srep28606.

46.Amadi C, Aleme BM. The prevalence of zinc deficiency among men with and without prostate cancer in port harcourt, nigeria[J]. Nutr Cancer, 2020, 72(6): 1018-1025. DOI: 10.1080/01635581.2019.1664600.

47.Pietrzak S, Marciniak W, Derkacz R, et al. Correlation between selenium and zinc levels and survival among prostate cancer patients[J]. Nutrients, 2024, 16(4): 527. DOI: 10.3390/nu16040527.

48.Goodarzi D, Cyrus A, Baghinia MR, et al. The efficacy of zinc for treatment of chronic prostatitis[J]. Acta Med Indones, 2013, 45(4): 259-264. https://pubmed.ncbi.nlm.nih.gov/24448329/

49.Tavani A, Longoni E, Bosetti C, et al. Intake of selected micronutrients and the risk of surgically treated benign prostatic hyperplasia: a case-control study from Italy[J]. Eur Urol, 2006, 50(3): 549-554. DOI: 10.1016/j.eururo.2005.11.027.

50.Stewart KL, Lephart ED. Overview of BPH: symptom relief with dietary polyphenols, vitamins and phytochemicals by nutraceutical supplements with implications to the prostate microbiome[J]. Int J Mol Sci, 2023, 24(6): 5486. DOI: 10.3390/ijms24065486.

51.Fontana F, Anselmi M, Limonta P. Unraveling the peculiar features of mitochondrial metabolism and dynamics in prostate cancer[J]. Cancers (Basel), 2023, 15(4): 1192. DOI: 10.3390/cancers15041192.

52.Liu BH, Xu CZ, Liu Y, et al. Mitochondrial quality control in human health and disease[J]. Mil Med Res, 2024, 11(1): 32. DOI: 10.1186/s40779-024-00536-5.

53.Zhang A, Gupte AA, Chatterjee S, et al. Enhanced succinate oxidation with mitochondrial complex II reactive oxygen species generation in human prostate cancer[J]. Int J Mol Sci, 2022, 23(20): 12168. DOI: 10.3390/ijms232012168.

54.Navratil J, Kratochvilova M, Raudenska M, et al. Long-term zinc treatment alters the mechanical properties and metabolism of prostate cancer cells[J]. Cancer Cell Int, 2024, 24(1): 313. DOI: 10.1186/s12935-024-03495-y.

55.Om AS, Chung KW. Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver[J]. J Nutr, 1996, 126(4): 842-848. DOI: 10.1093/jn/126.4.842.

56.Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview[J]. Endocr Rev, 2002, 23(2): 175-200. DOI: 10.1210/edrv.23.2.0460.

57.To PK, Do MH, Cho YS, et al. Zinc inhibits expression of androgen receptor to suppress growth of prostate cancer cells[J]. Int J Mol Sci, 2018, 19(10): 3062. DOI: 10.3390/ijms19103062.

58.Knudsen KE, Penning TM. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer[J]. Trends Endocrinol Metab, 2010, 21(5): 315-324. DOI: 10.1016/j.tem.2010.01.002.

59.Shi L, Yan Y, He Y, et al. Mutated SPOP E3 ligase promotes 17βHSD4 protein degradation to drive androgenesis and prostate cancer progression[J]. Cancer Res, 2021, 81(13): 3593-3606. DOI: 10.1158/0008-5472.Can-20-3258.

60.Costello LC, Liu Y, Zou J, et al. Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone[J]. J Biol Chem, 1999, 274(25): 17499-17504. DOI: 10.1074/jbc.274.25.17499.

61.Zhang X, Guan T, Yang B, et al. A novel role for zinc transporter 8 in the facilitation of zinc accumulation and regulation of testosterone synthesis in Leydig cells of human and mouse testicles[J]. Metabolism, 2018, 8840-8850. DOI: 10.1016/j.metabol.2018.09.002.

62.Marín De Jesús S, Vigueras-Villaseñor RM, Cortés-Barberena E, et al. Zinc and its impact on the function of the testicle and epididymis[J]. Int J Mol Sci, 2024, 25(16). DOI: 10.3390/ijms25168991.

63.Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species[J]. Nat Rev Immunol, 2013, 13(5): 349-361. DOI: 10.1038/nri3423.

64.Xue YN, Liu YN, Su J, et al. Zinc cooperates with p53 to inhibit the activity of mitochondrial aconitase through reactive oxygen species accumulation[J]. Cancer Med, 2019, 8(5): 2462-2473. DOI: 10.1002/cam4.2130.

65.Hacioglu C, Kacar S, Kar F, et al. Concentration-dependent effects of zinc sulfate on DU-145 human prostate cancer cell line: oxidative, apoptotic, inflammatory, and morphological analyzes[J]. Biol Trace Elem Res, 2020, 195(2): 436-444. DOI: 10.1007/s12011-019-01879-0.

66.Ge J, Fang C, Tan H, et al. Endogenous zinc-ion-triggered in situ gelation enables zn capture to reprogram benign hyperplastic prostate microenvironment and shrink prostate[J]. Adv Mater, 2024, 36(11): e2307796. DOI: 10.1002/adma.202307796.

67.Motafeghi F, Mortazavi P, Shokrzadeh M. Anticancer activity of zinc oxide nanoparticles on prostate and colon cancer cell line[J]. Toxicol Res (Camb), 2024, 13(1): tfad127. DOI: 10.1093/toxres/tfad127.

68.Hua X, Zhang J, Chen J, et al. Sodium butyrate alleviates experimental autoimmune prostatitis by inhibiting oxidative stress and NLRP3 inflammasome activation via the Nrf2/HO-1 pathway[J]. Prostate, 2024, 84(7): 666-681. DOI: 10.1002/pros.24683.

69.Li Y, Wu Z, Ma J, et al. Zinc attenuates prostate hyperplasia and inflammatory injury in obese rats by regulating zinc homeostasis and inhibiting the JAK1/STAT3 pathway[J]. Prostate, 2025, 85(8): 767-776. DOI: 10.1002/pros.24883.

70.Yan M, Hardin K, Ho E. Differential response to zinc-induced apoptosis in benign prostate hyperplasia and prostate cancer cells[J]. J Nutr Biochem, 2010, 21(8): 687-694. DOI: 10.1016/j.jnutbio.2009.04.002.

71.Ma D, Guo Y, Fu Y, et al. Temporal relationship of the orphan receptor TR3 translocation and expression with zinc-induced apoptosis in prostate cancer cells[J]. Transl Androl Urol, 2023, 12(3): 444-454. DOI: 10.21037/tau-23-61.

72.Yang N, Zhao B, Rasul A, et al. PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis[J]. Cell Death Dis, 2013, 4(9): e811. DOI: 10.1038/cddis.2013.333.

73.Nardinocchi L, Pantisano V, Puca R, et al. Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo[J]. PLoS One, 2010, 5(12): e15048. DOI: 10.1371/journal.pone.0015048.

74.Xu Y, Yang Y, Wang Z, et al. ZNF397 deficiency triggers TET2-driven lineage plasticity and AR-targeted therapy resistance in prostate cancer[J]. Cancer Discov, 2024, 14(8): 1496-1521. DOI: 10.1158/2159-8290.Cd-23-0539.

75.Xue YN, Yu BB, Liu YN, et al. Zinc promotes prostate cancer cell chemosensitivity to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing apoptosis[J]. Prostate, 2019, 79(6): 647-656. DOI: 10.1002/pros.23772.

76.Zhang Y, Song M, Mucci LA, et al. Zinc supplement use and risk of aggressive prostate cancer: a 30-year follow-up study[J]. Eur J Epidemiol, 2022, 37(12): 1251-1260. DOI: 10.1007/s10654-022-00922-0.

77.Zhang Y, Stopsack KH, Wu K, et al. Post-diagnostic zinc supplement use and prostate cancer survival among men with nonmetastatic prostate cancer[J]. J Urol, 2023, 209(3): 549-556. DOI: 10.1097/ju.0000000000003080.

78.Köhler K, Parr MK, Geyer H, et al. Serum testosterone and urinary excretion of steroid hormone metabolites after administration of a high-dose zinc supplement[J]. 2009, 63(1): 65-70. DOI: 10.1038/sj.ejcn.1602899.

79.Tiscione D, Gallelli L, Tamanini I, et al. Daidzein plus isolase associated with zinc improves clinical symptoms and quality of life in patients with LUTS due to benign prostatic hyperplasia: results from a phase I-II study[J]. Arch Ital Urol Androl, 2017, 89(1): 12-16. DOI: 10.4081/aiua.2017.1.12.

80.Yuan Y, Wei Z, Chu C, et al. Development of zinc-specific iCEST MRI as an imaging biomarker for prostate cancer[J]. Angew Chem Int Ed Engl, 2019, 58(43): 15512-15517. DOI: 10.1002/anie.201909429.

81.Xue Y, Tang H, Chen G, et al. Intracellular regulation of zinc by metal-organic framework-mediated genome editing for prostate cancer therapy[J]. Biomater Sci, 2023, 11(23): 7556-7567. DOI: 10.1039/d3bm00002h.

82.Tao M, Xu K, He S, et al. Zinc-ion-mediated self-assembly of forky peptides for prostate cancer-specific drug delivery[J]. Chem Commun (Camb), 2018, 54(37): 4673-4676. DOI: 10.1039/c8cc00604k.