Welcome to visit Zhongnan Medical Journal Press Series journal website!

Genetic association between sleep apnea syndrome and stroke: a mediated Mendelian randomization study

Published on Aug. 25, 2025Total Views: 112 timesTotal Downloads: 24 timesDownloadMobile

Author: CHEN Wei 1 WANG Ye 2

Affiliation: 1. Department of Emergency Medicine, Wuhan First Hospital, Wuhan 430022, China. 2. Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, China.

Keywords: Sleep apnea syndrome Stroke Mendelian randomization Serum metabolites

DOI: 10.12173/j.issn.1004-5511.202412052

Reference: Chen W, Wang Y. Genetic association between sleep apnea syndrome and stroke: a mediated Mendelian randomization study[J]. Yixue Xinzhi Zazhi, 2025, 35(8): 926-931. DOI: 10.12173/j.issn.1004-5511.202412052. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the causal relationship between sleep apnea syndrome (SAS) and stroke and the possible mediating role of serum metabolites from a genetic perspective based on Mendelian randomization (MR).

Methods  A two-sample bidirectional MR approach was used to explore the effect of SAS on stroke and its subtypes, and serum metabolites were used as mediators for MR analysis. The inverse-variance weighted (IVW) method was considered as the primary method to evaluate the causal relationship between exposure and outcome. Additionally, sensitivity analyses were performed to evaluate pleiotropy and heterogeneity.

Results  Two- sample bidirectional MR showed that there was a significant correlation between SAS and lacunar infarction [OR=1.144, 95%CI (1.014, 1.291), P<0.05] and large artery atherosclerotic ischemic stroke [OR=1.118, 95%CI (1.028, 1.371), P<0.05]. Mediating effects showed that SAS increased the risk of largeartery atherosclerotic ischemic stroke by increasing the levels of N6-carbamoylthreonyladenosine [β=0.020, 95%CI (0.001, 0.038), P=0.035] and 4-hydroxyphenylpyruvic acid [β=0.019, 95%CI (0.001, 0.036), P=0.037].

Conclusion  There is a causal relationship in genetics between SAS, lacunar infarction, and large artery atherosclerotic ischemic stroke, and changes in serum metabolite levels may be a potential mechanism underlying the causal relationship between SAS and large artery atherosclerotic ischemic stroke.

Full-text
Please download the PDF version to read the full text: download
References

1.Lyons MM, Bhatt NY, Pack AI, et al. Global burden of sleep-disordered breathing and its implications[J]. Respirology, 2020, 25(7): 690-702. DOI: 10.1111/resp.13838.

2.Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-698. DOI: 10.1016/S2213-2600(19)30198-5.

3.Ma Q, Li R, Wang L, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. DOI: 10.1016/S2468-2667(21)00228-0.

4.Liu X, Lam DC, Chan K, et al. Prevalence and determinants of sleep apnea in patients with stroke: a Meta-analysis[J]. J Stroke Cerebrovasc Dis, 2021, 30(12): 106129. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106129.

5.Hoang-Anh T, Duong-Minh Q, Nguyen-Thi-Y N, et al. Study of the obstructive sleep apnea syndrome in cerebral infarction patients[J]. Front Neurol, 2023, 14: 1132014. DOI: 10.3389/fneur.2023.1132014.

6.Dong R, Dong Z, Liu H, et al. Prevalence, risk factors, outcomes, and treatment of obstructive sleep apnea in patients with cerebrovascular disease: a systematic review[J]. J Stroke Cerebrovasc Dis, 2018, 27(6): 1471-1480. DOI: 10.1016/j.jstrokecerebrovasdis.2017.12.048.

7.Mendelson M, Lyons OD, Yadollahi A, et al. Effects of exercise training on sleep apnoea in patients with coronary artery disease: a randomised trial[J]. Eur Respir J, 2016, 48(1): 142-150. DOI: 10.1183/13993003.01897-2015.

8.Culebras A. Sleep apnea and stroke: a dynamic duo[J]. Sleep Medicine Reviews, 2024, 75: 101943. DOI: 10.1016/j.smrv.2024.101943.

9.Aaronson JA, van Bennekom CA, Hofman WF, et al. Obstructive sleep apnea is related to impaired cognitive and functional status after stroke[J]. Sleep, 2015, 38(9): 1431-1437. DOI: 10.5665/sleep.4984.

10.Jacob MV, Lopata AL, Dasouki M, et al. Metabolomics toward personalized medicine[J]. Mass Spectrom Rev, 2017, 38(3): 221-238. DOI: 10.1002/mas.21548.

11.Li W, Shao C, Li C, et al. Metabolomics: a useful tool for ischemic stroke research[J]. J Pharm Anal, 2023, 13(9): 968-983. DOI: 10.1016/j.jpha.2023.05.015.

12.Mohit, Tomar MS, Sharma D, et al. Emerging role of metabolomics for biomarker discovery in obstructive sleep apnea[J]. Sleep Breath, 2023, 27(4): 1247-1254. DOI: 10.1007/s11325-022-02730-y.

13.Kharouba M, Patel DD, Jaber RH, et al. Metabolomic analysis in neurocritical care patients[J]. Metabolites, 2023, 13(6): 745. DOI: 10.3390/metabo13060745.

14.Davey SG, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies[J]. Hum Mol Genet, 2014, 23(R1): R89-R98. DOI: 10.1093/hmg/ddu328.

15.Li Q, Wei Z, Zhang Y, et al. Causal role of metabolites in non-small cell lung cancer: Mendelian randomization study[J]. PLoS One, 2024, 19(3): e0300904. DOI: 10.1371/journal.pone.0300904.

16.Bowden J, Del GMF, Minelli C, et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic[J]. Int J Epidemiol, 2016, 45(6): 1961-1974. DOI: 10.1093/ije/dyw220.

17.Vojinovic D, Kalaoja M, Trompet S, et al. Association of circulating metabolites in plasma or serum and risk of stroke: Meta-analysis from 7 prospective cohorts[J]. Neurology, 2021, 96(8): e1110-e1123. DOI: 10.1212/wnl.0000000000011236.

18.Guo MN, Hao XY, Tian J, et al. Human blood metabolites and lacunar stroke: a Mendelian randomization study[J]. Int J Stroke, 2023, 18(1): 109-116. DOI: 10.1177/17474930221140792.

19.Mohit, Tomar MS, Araniti F, et al. Identification of metabolic fingerprints in severe obstructive sleep apnea using gas chromatography-mass spectrometry[J]. Front Mol Biosci, 2022, 9: 1026848. DOI: 10.3389/fmolb.2022.1026848.

20.Zhang Y, Ngo D, Yu B, et al. Development and validation of a metabolite index for obstructive sleep apnea across race/ethnicities[J]. Sci Rep, 2022, 12(1): 21805. DOI: 10.1038/s41598-022-26321-9.

21.Stanek A, Brozyna-Tkaczyk K, Myslinski W. Oxidative stress markers among obstructive sleep apnea patients[J]. Oxid Med Cell Longev, 2021, 2021: 9681595. DOI: 10.1155/2021/9681595.

22.McCarthy J, Yang J, Clissold B, et al. Hypertension management in stroke prevention: time to consider primary aldosteronism[J]. Stroke, 2021, 52(10): e626-e634. DOI: 10.1161/STROKEAHA.120.033990.

23.Lustgarten MS, Fielding RA. Metabolites associated with circulating interleukin-6 in older adults[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(9): 1277-1283. DOI: 10.1093/gerona/glw039.

24.Monsour M, Croci DM, Agazzi S, et al. Contemplating IL-6, a double-edged sword cytokine: which side to use for stroke pathology?[J]. CNS Neurosci Ther, 2023, 29(2): 493-497. DOI: 10.1111/cns.14041.

25.Wang G, Wang J, Li X, et al. Hypoxia and TNF-α synergistically induce expression of IL-6 and IL-8 in human fibroblast-like synoviocytes via enhancing TAK1/NF-κB/HIF-1α Signaling[J]. Inflammation, 2023, 46(3): 912-924. DOI: 10.1007/s10753-022-01779-x.

26.Moroni F, Ammirati E, Hainsworth AH, et al. Association of white matter hyperintensities and cardiovascular disease: the importance of microcirculatory disease[J]. Circ Cardiovasc Imaging, 2020, 13(8): e010460. DOI: 10.1161/CIRCIMAGING.120.010460.

27.Sliz E, Shin J, Ahmad S, et al. Circulating metabolome and white matter hyperintensities in women and men[J]. Circulation, 2022, 145(14): 1040-1052. DOI: 10.1161/CIRCULATIONAHA.121.056892.