Prostate cancer (PCa) is one of the most prevalent malignancies among men worldwide and a leading cause of cancer-related deaths. As an androgen-dependent tumor of the male reproductive system, PCa initially responds well to androgen deprivation therapy (ADT) and second-generation androgen receptor (AR) antagonists (enzalutamide and apalutamide), which significantly extend progression-free survival. However, Most patients would developed into castration- resistant prostate cancer (CRPC), resulting in the resistant to ADT. The mechanisms driving resistance to novel endocrine therapies exhibit biological complexity, including abnormalities in the AR signaling axis, defects in DNA damage repair, alterations in the tumor microenvironment, and metabolic reprogramming. In recent years, important advances have been made in targeted therapeutic strategies. For instance, PARP inhibitors (olaparib) have demonstrated remarkable efficacy in patients with defects in DNA damage repair, PROTAC technology has shown potential in reversing castration resistance by degrading AR and its variants, thereby countering aberrant activation of the AR signaling pathway. This review systematically elucidates the major resistance mechanisms of CRPC, explores the latest advances in targeted and immunotherapy for CRPC, and envisions the potential of multidisciplinary, multi-target combination therapies to reverse castration resistance in PCa, providing novel therapeutic strategies and targets for CRPC.
HomeArticlesVol 35,2025 No.4Detail
Research progress on mechanisms of endocrine therapy resistance in prostate cancer
Published on Apr. 25, 2025Total Views: 125 timesTotal Downloads: 65 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
2.Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
3.Wang F, Wang C, Xia H, et al. Burden of prostate cancer in China, 1990—2019: findings from the 2019 global burden of disease study[J]. Front Endocrinol (Lausanne), 2022, 13: 853623. DOI: 10.3389/fendo.2022.853623.
4.赫捷, 陈万青, 李霓, 等. 中国前列腺癌筛查与早诊早治指南(2022, 北京)[J]. 中国肿瘤, 2022, 31(1): 1-30. [He J, Chen WQ, Li N, et al. China guideline for the screening and early detection of prostate cancer (2022, Beijing)[J]. China Cancer, 2022, 31(1): 1-30.] DOI: 10.11735/j.issn.1004-0242.2022.01.A001.
5.Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer[J]. Pharmacol Ther, 2013, 140(3): 223-238. DOI: 10.1016/j.pharmthera. 2013.07.003.
6.Somasekharan SP, Saxena N, Zhang F, et al. Regulation of ar mRNA translation in response to acute AR pathway inhibition[J]. Nucleic Acids Res, 2022, 50(2): 1069-1091. DOI: 10.1093/nar/gkab1247.
7.Jamroze A, Chatta G, Tang DG. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance[J]. Cancer Lett, 2021, 518: 1-9. DOI: 10.1016/j.canlet.2021.06.006.
8.Sobhani N, Neeli PK, D'Angelo A, et al. Ar-v7 in metastatic prostate cancer: a strategy beyond redemption[J]. Int J Mol Sci, 2021, 22(11): 5515. DOI: 10.3390/ijms22115515.
9.Liu JM, Chen YT, Wu CT, et al. Androgen deprivation therapy for prostate cancer and the risk of thyroid diseases[J]. Prostate, 2022, 82(7): 809-815. DOI: 10.1002/pros.24323.
10.毛云, 杨杰, 金坤, 等. 转移性激素敏感性前列腺癌转变为转移性去势抵抗性前列腺癌机制的研究进展[J]. 医学新知, 2025, 35(2): 222-231. [Mao Y, Yang J, Jin K, et al. Research progress on the transition metchansim of metastatic hormone-sensitive prostate cancer to metastatic castration-resistant prostate cancer[J]. Yixue Xinzhi Zazhi, 2025, 35(2): 222-231.] DOI: 10.12173/j.issn.1004-5511.202409157.
11.Liu P, Wang W, Wang F, et al. Alterations of plasma exosomal proteins and motabolies are associated with the progression of castration-resistant prostate cancer[J]. J Transl Med, 2023, 21(1): 40. DOI: 10.1186/s12967-022-03860-3.
12.杨雷, 王凤玲, 黄玲, 等. 恩扎卢胺治疗转移性前列腺癌的成本-效果分析[J]. 药物流行病学杂志, 2024, 33(3): 269-276. [Yang L, Wang FL, Huang L, et al. Cost-effectiveness analysis of enzalutamide in the treatment of metastatic prostate cancer[J]. Chinese Journal of Pharmacoepidemiology, 2024, 33(3): 269-276.] DOI: 10.12173/j.issn.1005-0698.202304008.
13.Boujonnier F, Lemaitre F, Scailteux LM. Pharmacokinetic interactions between abiraterone, Apalutamide, Darolutamide or Enzalutamide and antithrombotic drugs: prediction of clinical events and review of pharmacological information[J]. Cardiovasc Drugs Ther, 2024, 38(4): 757-767. DOI: 10.1007/s10557-023-07453-0.
14.Norz V, Rausch S. Treatment and resistance mechanisms in castration-resistant prostate cancer: new implications for clinical decision making?[J]. Expert Rev Anticancer Ther, 2021, 21(2): 149-163. DOI: 10.1080/14737140.2021.1843430.
15.Parida GK, Panda RA, Bishnoi K, et al. Efficacy and safety of actinium-225 prostate-specific membrane antigen radioligand therapy in metastatic prostate cancer: a systematic review and Meta-analysis[J]. Med Princ Pract, 2023, 32(3): 178-191. DOI: 10.1159/000531246.
16.Fallah J, Agrawal S, Gittleman H, et al. FDA approval summary: lutetium lu 177 vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer[J]. Clin Cancer Res, 2023, 29(9): 1651-1657. DOI: 10.1158/1078-0432.CCR-22-2875.
17.Abramenkovs A, Hariri M, Spiegelberg D, et al. Ra-223 induces clustered DNA damage and inhibits cell survival in several prostate cancer cell lines[J]. Transl Oncol, 2022, 26: 101543. DOI: 10.1016/j.tranon.2022.101543.
18.Zhu X, Farsh T, Vis D, et al. Genomic and transcriptomic features of androgen receptor signaling inhibitor resistance in metastatic castration-resistant prostate cancer[J]. J Clin Invest, 2024, 134(19): e178604. DOI: 10.1172/JCI178604.
19.Gucalp A, Traina TA. The androgen receptor: is it a promising target?[J]. Ann Surg Oncol, 2017, 24(10): 2876-2880. DOI: 10.1245/s10434-017-5961-9.
20.Schweizer MT, Yu EY. Persistent androgen receptor addiction in castration-resistant prostate cancer[J]. J Hematol Oncol, 2015, 8: 128. DOI: 10.1186/s13045-015-0225-2.
21.Antonarakis ES, Zhang N, Saha J, et al. Prevalence and spectrum of AR ligand-binding domain mutations detected in circulating-tumor DNA across disease states in men with metastatic castration-resistant prostate cancer[J]. JCO Precis Oncol, 2024, 8: e2300330. DOI: 10.1200/PO.23.00330.
22.Thankan RS, Thomas E, Purushottamachar P, et al. Salinization dramatically enhance the anti-prostate cancer efficacies of AR/AR-v7 and mnk1/2 molecular glue degraders, galeterone and VNPP433-3β which outperform docetaxel and enzalutamide in crpc CWR22Rv1 xenograft mouse model[J]. Bioorg Chem, 2023, 139: 106700. DOI: 10.1016/j.bioorg.2023.106700.
23.Tyagi A, Chandrasekaran B, Shukla V, et al. Nutraceuticals target androgen receptor-splice variants (AR-SV) to manage castration resistant prostate cancer (CRPC)[J]. Pharmacol Ther, 2024, 264: 108743. DOI: 10.1016/j.pharmthera.2024.108743.
24.Özturan D, Morova T, Lack NA. Androgen receptor-mediated transcription in prostate cancer[J]. Cells, 2022, 11(5): 898. DOI: 10.3390/cells11050898.
25.Singh R, Meng H, Shen T, et al. TRAF4-mediated nonproteolytic ubiquitination of androgen receptor promotes castration-resistant prostate cancer[J]. Proc Natl Acad Sci U S A, 2023, 120(20): e2218229120. DOI: 10.1073/pnas.2218229120.
26.Ma B, Fan Y, Zhang D, et al. De novo design of an androgen receptor DNA binding domain-targeted peptide protac for prostate cancer therapy[J]. Adv Sci (Weinh), 2022, 9(28): e2201859. DOI: 10.1002/advs.202201859.
27.de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth[J]. Cancer Cell, 2023, 41(3): 374-403. DOI: 10.1016/j.ccell.2023.02.016.
28.Cheng B, Huang H. Expanding horizons in overcoming therapeutic resistance in castration-resistant prostate cancer: targeting the androgen receptor-regulated tumor immune microenvironment[J]. Cancer Biol Med, 2023, 20(8): 568-574. DOI: 10.20892/j.issn.2095-3941.2023.0256.
29.Jiao S, Subudhi SK, Aparicio A, et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy[J]. Cell, 2019, 179(5): 1177-1190. DOI: 10.1016/j.cell.2019.10.029.
30.Zhang Z, Karthaus WR, Lee YS, et al. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer[J]. Cancer Cell, 2020, 38(2): 279-296. e9. DOI: 10.1016/j.ccell.2020.06.005.
31.Jeong J, Zhong S, Li F, et al. Tumor-derived OBP2A promotes prostate cancer castration resistance[J]. J Exp Med, 2023, 220(3): e20211546. DOI: 10.1084/jem.20211546.
32.Liao C, Huang Z, Liu J, et al. Role of extracellular vesicles in castration-resistant prostate cancer[J]. Crit Rev Oncol Hematol, 2024, 197: 104348. DOI: 10.1016/j.critrevonc.2024.104348.
33.Zetrini AE, Lip H, Abbasi AZ, et al. Remodeling tumor immune microenvironment by using polymer-lipid-manganese dioxide nanoparticles with radiation therapy to boost immune response of castration-resistant prostate cancer[J]. Research (Wash D C), 2023, 6: 0247. DOI: 10.34133/research.0247.
34.Polkinghorn WR, Parker JS, Lee MX, et al. Androgen receptor signaling regulates dna repair in prostate cancers[J]. Cancer Discov, 2013, 3(11): 1245-1253. DOI: 10.1158/2159-8290.CD-13-0172.
35.Fettke H, Dai C, Kwan EM, et al. Brca-deficient metastatic prostate cancer has an adverse prognosis and distinct genomic phenotype[J]. Ebiomedicine, 2023, 95: 104738. DOI: 10.1016/j.ebiom.2023.104738.
36.Paschalis A, Sheehan B, Riisnaes R, et al. Prostate-specific membrane antigen heterogeneity and dna repair defects in prostate cancer[J]. Eur Urol, 2019, 76(4): 469-478. DOI: 10.1016/j.eururo.2019.06.030.
37.Dong Q, Qiu H, Piao C, et al. LncRNA SNHG4 promotes prostate cancer cell survival and resistance to enzalutamide through a let-7a/RREB1 positive feedback loop and a ceRNA network[J]. J Exp Clin Cancer Res, 2023, 42(1): 209. DOI: 10.1186/s13046-023-02774-2.
38.Sardar S, McNair CM, Ravindranath L, et al. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer[J]. Oncogene, 2024, 43(43): 3197-3213. DOI: 10.1038/s41388-024-03148-4.
39.Smith MR, Scher HI, Sandhu S, et al. Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial[J]. Lancet Oncol, 2022, 23(3): 362-373. DOI: 10.1016/S1470-2045(21)00757-9.
40.Chang T, Lian Z, Ma S, et al. Combination with vorinostat enhances the antitumor activity of cisplatin in castration-resistant prostate cancer by inhibiting DNA damage repair pathway and detoxification of GSH[J]. Prostate, 2023, 83(5): 470-486. DOI: 10.1002/pros.24479.
41.Rana Z, Diermeier S, Hanif M, et al. Understanding failure and improving treatment using HDAC inhibitors for prostate cancer[J]. Biomedicines, 2020, 8(2): 22. DOI: 10.3390/biomedicines8020022.
42.Slootbeek PHJ, Duizer ML, van der Doelen MJ, et al. Impact of DNA damage repair defects and aggressive variant features on response to carboplatin-based chemotherapy in metastatic castration-resistant prostate cancer[J]. Int J Cancer, 2021, 148(2): 385-395. DOI: 10.1002/ijc.33306.
43.Abida W, Campbell D, Patnaik A, et al. Rucaparib for the treatment of metastatic castration-resistant prostate cancer associated with a DNA damage repair gene alteration: final results from the phase 2 TRITON2 study[J]. Eur Urol, 2023, 84(3): 321-330. DOI: 10.1016/j.eururo.2023.05.021.
44.Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. DOI: 10.1126/science.aaw5473.
45.Iannelli F, Lombardi R, Costantini S, et al. Integrated proteomics and metabolomics analyses reveal new insights into the antitumor effects of valproic acid plus simvastatin combination in a prostate cancer xenograft model associated with downmodulation of yap/taz signaling[J]. Cancer Cell Int, 2024, 24(1): 381. DOI: 10.1186/s12935-024-03573-1.
46.Beier AK, Puhr M, Stope MB, et al. Metabolic changes during prostate cancer development and progression[J]. J Cancer Res Clin Oncol, 2023, 149(5): 2259-2270. DOI: 10.1007/s00432-022-04371-w.
47.Verma S, Shankar E, Chan ER, et al. Metabolic reprogramming and predominance of solute carrier genes during acquired enzalutamide resistance in prostate cancer[J]. Cells, 2020, 9(12): 2535. DOI: 10.3390/cells9122535.
48.Petrella G, Corsi F, Ciufolini G, et al. Metabolic reprogramming of castration-resistant prostate cancer cells as a response to chemotherapy[J]. Metabolites, 2022, 13(1): 65. DOI: 10.3390/metabo13010065.
49.Zhao B, Wang J, Chen L, et al. The role of glutamine metabolism in castration-resistant prostate cancer[J]. Asian J Androl, 2023, 25(2): 192-197. DOI: 10.4103/aja2022105.
50.Wang J, Ding HK, Xu HJ, et al. Single-cell analysis revealing the metabolic landscape of prostate cancer[J]. Asian J Androl, 2024, 26(5): 451-463. DOI: 10.4103/aja20243.
51.Guseva NV, Rokhlin OW, Glover RA, et al. Tofa (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status[J]. Cancer Biol Ther, 2011, 12(1): 80-85. DOI: 10.4161/cbt.12.1.15721.
52.Ye J, Cai S, Feng Y, et al. Metformin escape in prostate cancer by activating the PTGR1 transcriptional program through a novel super-enhancer[J]. Signal Transduct Target Ther, 2023, 8(1): 303. DOI: 10.1038/s41392-023-01516-2.
53.Sridaran D, Bradshaw E, DeSelm C, et al. Prostate cancer immunotherapy: improving clinical outcomes with a multi-pronged approach[J]. Cell Rep Med, 2023, 4(10): 101199. DOI: 10.1016/j.xcrm.2023.101199.
54.Hawley JE, Obradovic AZ, Dallos MC, et al. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer[J]. Cancer Cell, 2023, 41(11): 1972-1988. e5. DOI: 10.1016/j.ccell.2023.10.006.
55.Kelly WK, Danila DC, Lin CC, et al. Xaluritamig, a STEAP1×CD3 XmAb 2+1 immune therapy for metastatic castration-resistant prostate cancer: results from dose exploration in a first-in-human study[J]. Cancer Discov, 2024, 14(1): 76-89. DOI: 10.1158/2159-8290.CD-23-0964.
56.Hansen SB, Unal B, Kuzu OF, et al. Immunological facets of prostate cancer and the potential of immune checkpoint inhibition in disease management[J]. Theranostics, 2024, 14(18): 6913-6934. DOI: 10.7150/thno.100555.
57.Lu X, Horner JW, Paul E, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer[J]. Nature, 2017, 543(7647): 728-732. DOI: 10.1038/nature21676.
58.Klümper N, Grünwald V, Hartmann A, et al. The role of microsatellite instability/DNA mismatch repair deficiency and tumor mutational burden as biomarkers in predicting response to immunotherapy in castration-resistant prostate cancer[J]. Eur Urol, 2024, 86(5): 388-390. DOI: 10.1016/j.eururo.2024.04.026.
59.Powles T, Yuen KC, Gillessen S, et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial[J]. Nat Med, 2022, 28(1): 144-153. DOI: 10.1038/s41591-021-01600-6.
60.Zhang Y. LncRNA-encoded peptides in cancer[J]. J Hematol Oncol, 2024, 17(1): 66. DOI: 10.1186/s13045-024-01591-0.
61.Lin Y, Tan H, Yu G, et al. Molecular mechanisms of noncoding RNA in the occurrence of castration-resistant prostate cancer[J]. Int J Mol Sci, 2023, 24(2): 1305. DOI: 10.3390/ijms24021305.
62.Yao Y, Chen X, Wang X, et al. Glycolysis related lncRNA SNHG3/miR-139-5p/PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance[J]. Int J Biol Macromol, 2024, 260(Pt 2): 129635. DOI: 10.1016/j.ijbiomac.2024.129635.
63.Shi F, Wu L, Cui D, et al. Lncfalec recruits ART5/PARP1 and promotes castration-resistant prostate cancer through enhancing PARP1-meditated self PARylation[J]. Cell Oncol (Dordr), 2023, 46(3): 761-776. DOI: 10.1007/s13402-023-00783-z.
64.Chang YT, Lin TP, Tang JT, et al. HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer[J]. Cancer Lett, 2018, 433: 43-52. DOI: 10.1016/j.canlet.2018.06.029.
65.Groen L, Yurevych V, Ramu H, et al. The androgen regulated lncRNA NAALADL2-AS2 promotes tumor cell survival in prostate cancer[J]. Noncoding RNA, 2022, 8(6): 81. DOI: 10.3390/ncrna8060081.
66.Tai Z, Ma J, Ding J, et al. Aptamer-functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer[J], Int J Nanomedicine, 2020, 15: 10305-10320. DOI: 10.2147/IJN.S282107.
67.Chen K, Zhang Y, Li C, et al. Clinical value of molecular subtypes identification based on anoikis-related lncrnas in castration-resistant prostate cancer[J]. Cell Signal, 2024, 117: 111104. DOI: 10.1016/j.cellsig.2024.111104.
68.Ferraz RS, Cavalcante JVF, Magalhães L, et al. Revealing metastatic castration-resistant prostate cancer master regulator throughlncrnas-centered regulatory network[J]. Cancer Med, 2023, 12(18): 19279-19290. DOI: 10.1002/cam4.6481.
69.Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine differentiation in prostate cancer: emerging biology, models, and therapies[J]. Cold Spring Harb Perspect Med, 2019, 9(2): a30593. DOI: 10.1101/cshperspect.a030593.
70.Kushwaha PP, Verma S, Kumar S, et al. Role of prostate cancer stem-like cells in the development of antiandrogen resistance[J]. Cancer Drug Resist, 2022, 5(2): 459-471. DOI: 10.20517/cdr.2022.07.
71.Ge R, Wang Z, Montironi R, et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer[J]. Ann Oncol, 2020, 31(4): 470-479. DOI: 10.1016/j.annonc.2020.02.002.
Popular Papers
-
Potential applications and challenges of generative artificial intelligence in traditional Chinese medicine education
Nov. 13, 20245053
-
Research on the development and management of clinical pathways Ⅲ: thoughts on the work of clinical pathways under the DRG/DIP payment model of medical insurance payment
Nov. 13, 20244601
-
Prediction and analysis of disease burden of mental disorders in China from 1990 to 2021
Jan. 25, 20252135
-
A Meta-analysis of the effectiveness of parent-based psychological intervention in adolescents with depressive disorders
Nov. 12, 20242035
-
The analysis of disease burden of benign prostatic hyperplasia in China from 1990 to 2021
Dec. 28, 20241837
-
Construction of a depression risk prediction model for elderly individuals living alone with chronic diseases in China
Dec. 28, 20241783
-
Construction and validation of a prognostic model for severe fever with thrombocytopenia syndrome
Nov. 12, 20241763
-
The effect of applying Bloom’s taxonomy theory of education in the teaching of evidence-based medicine curriculum for undergraduates
Nov. 13, 20241750