Stroke is an important factor causing disability and death worldwide, and post-stroke hemiplegia is the main clinical symptom of patients. Lower limb motor dysfunction is one of the most common complications, seriously affecting patients' walking ability and daily living activities, and bringing huge burden to social economy and personal health. How to effectively promote the rehabilitation of lower limb function in stroke patients is a challenge that needs to be addressed in clinical rehabilitation. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive and painless neural regulation technique, has become a new supplementary method for improving limb dysfunction in stroke patients in recent years. It has been widely used to recover post-stroke motor dysfunction and has achieved good results. This review mainly summarized the application of TMS, rTMS and their different stimulation modes, bilateral brain rTMS, and individnalized targeted TMS in lower limb rehabilitation of stroke patients, to provide reference for related research and clinical applications.
HomeArticlesVol 34,2024 No.11Detail
Application of repetitive transcranial magnetic stimulation in lower limb rehabilitation after stroke
Published on Dec. 18, 2024Total Views: 40 timesTotal Downloads: 15 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Stinear CM, Lang CE, Zeiler S, et al. Advances and challenges in stroke rehabilitation[J]. Lancet Neurol, 2020, 19(4): 348-360. DOI: 10.1016/S1474-4422(19)30415-6.
2.Liu K, Yin M, Cai Z. Research and application advances in rehabilitation assessment of stroke[J]. J Zhejiang Univ Sci B, 2022, 23(8): 625-641. DOI: 10.1631/jzus.B2100999.
3.Wang J, Wu Z, Hong S, et al. Cerebellar transcranial magnetic stimulation for improving balance capacity and activity of daily living in stroke patients: a systematic review and Meta-analysis[J]. BMC Neurol, 2024, 24(1): 205. DOI: 10.1186/s12883-024-03720-1.
4.Smith MC, Byblow WD, Barber PA, et al. Proportional recovery from lower limb motor impairment after stroke[J]. Stroke, 2017, 48(5): 1400-1403. DOI: 10.1161/STROKEAHA.116.016478.
5.Stinear CM, Petoe MA, Byblow WD. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation[J]. Brain Stimul, 2015, 8(6): 1183-1190. DOI: 10.1016/j.brs.2015.06.015.
6.Hernandez-Pavon JC, Harvey RL. Noninvasive transcranial magnetic brain stimulation in stroke[J]. Phys Med Rehabil Clin N Am, 2019, 30(2): 319-335. DOI: 10.1016/j.pmr.2018.12.010.
7.van Lieshout ECC, van der Worp HB, Visser-Meily JMA, et al. Timing of repetitive transcranial magnetic stimulation onset for upper limb function after stroke: a systematic review and Meta-analysis[J]. Front Neurol, 2019, 10: 1269. DOI: 10.3389/fneur.2019.01269.
8.Yang YW, Pan WX, Xie Q. Combined effect of repetitive transcranial magnetic stimulation and physical exercise on cortical plasticity[J]. Neural Regen Res, 2020, 15(11): 1986-1994. DOI: 10.4103/1673-5374.282239.
9.Lefaucheur JP, Aleman A, Baeken C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528. DOI: 10.1016/j.clinph.2019.11.002.
10.Burke MJ, Fried PJ, Pascual-Leone A. Transcranial magnetic stimulation: neurophysiological and clinical applications[J]. Handb Clin Neurol, 2019, 163: 73-92. DOI: 10.1016/B978-0-12-804281-6.00005-7.
11.Lieb A, Zrenner B, Zrenner C, et al. Brain-oscillation-synchronized stimulation to enhance motor recovery in early subacute stroke: a randomized controlled double-blind three- arm parallel-group exploratory trial comparing personalized, non- personalized and sham repetitive transcranial magnetic stimulation (Acronym: BOSS-STROKE)[J]. BMC Neurol, 2023, 23(1): 204. DOI: 10.1186/s12883-023-03235-1.
12.Zhang L, Xing G, Fan Y, et al. Short-and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and Meta-analysis[J]. Clin Rehabil, 2017, 31(9): 1137-1153. DOI: 10.1177/0269215517692386.
13.Wang C, Zeng Q, Yuan Z, et al. Effects of low-frequency (0.5 Hz) and high-frequency (10 Hz) repetitive transcranial magnetic stimulation on neurological function, motor function, and excitability of cortex in ischemic stroke patients[J]. Neurologist, 2023, 28(1): 11-18. DOI: 10.1097/NRL.0000000000000435.
14.Cha TH, Hwang HS. Rehabilitation interventions combined with noninvasive brain stimulation on upper limb motor function in stroke patients[J]. Brain Sci, 2022, 12(8): 994. DOI: 10.3390/brainsci12080994.
15.Wu ZY, Wang YQ, Wen XP, et al. Does noninvasive cerebellar stimulation improve the balance and walking function of patients with stroke: a Meta-analysis of randomized controlled trials[J]. Medicine (Baltimore), 2022, 101(36): e30302. DOI: 10.1097/MD. 0000000000030302.
16.Vaz PG, Salazar APDS, Stein C, et al. Noninvasive brain stimulation combined with other therapies improves gait speed after stroke: a systematic review and Meta-analysis[J]. Top Stroke Rehabil, 2019, 26(3): 201-213. DOI: 10.1080/10749357.2019.1565696.
17.Safdar A, Smith MC, Byblow WD, et al. Applications of repetitive transcranial magnetic stimulation to improve upper limb motor performance after stroke: a systematic review[J]. Neurorehabil Neural Repair, 2023, 37(11-12): 837-849. DOI: 10.1177/15459683231209722.
18.Xie YJ, Chen Y, Tan HX, et al. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network Meta-analysis[J]. Neural Regen Res, 2021, 16(6): 1168-1176. DOI: 10.4103/1673-5374.300341.
19.Grooms DR, Diekfuss JA, Ellis JD, et al. A novel approach to evaluate brain activation for lower extremity motor control[J]. J Neuroimaging, 2019, 29(5): 580-588. DOI: 10.1111/jon.12645.
20.Kakuda W, Abo M, Watanabe S, et al. High-frequency rTMS applied over bilateral leg motor areas combined with mobility training for gait disturbance after stroke: a preliminary study[J]. Brain Inj, 2013, 27(9): 1080-1086. DOI: 10.3109/02699052.2013.794973.
21.Zhang M, Wang R, Luo X, et al. Repetitive transcranial magnetic stimulation target location methods for depression[J]. Front Neurosci, 2021, 15: 695423. DOI: 10.3389/fnins.2021.695423.
22.Suppa A, Huang YZ, Funke K, et al. Ten years of Theta burst stimulation in humans: established knowledge, unknowns and prospects[J]. Brain Stimul, 2016, 9(3): 323-335. DOI: 10.1016/j.brs.2016.01.006.
23.Jemna N, Zdrenghea AC, Frunza G, et al. Theta-burst stimulation as a therapeutic tool in neurological pathology: a systematic review[J]. Neurol Sci, 2024, 45(3): 911-940. DOI: 10.1007/s10072-023-07144-6.
24.Huang YZ, Rothwell JC. The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex[J]. Clin Neurophysiol, 2004, 115(5): 1069-1075. DOI: 10.1016/j.clinph.2003.12.026.
25.Jiang T, Wei X, Wang M, et al. Theta burst stimulation: what role does it play in stroke rehabilitation? a systematic review of the existing evidence[J]. BMC Neurol, 2024, 24(1): 52. DOI: 10.1186/s12883-023-03492-0.
26.Cassidy JM, Gillick BT, Carey JR. Priming the brain to capitalize on metaplasticity in stroke rehabilitation[J]. Phys Ther, 2014, 94(1): 139-150. DOI: 10.2522/ptj.20130027.
27.Koch G, Bonnì S, Casula EP, et al. Effect of cerebellar stimulationon gait and balance recovery inpatients with hemiparetic stroke: a randomizedclinical trial[J]. JAMA Neurol, 2019, 76(2): 170-178. DOI: 10.1001/jamaneurol. 2018.3639.
28.Takeuchi N, Chuma T, Matsuo Y, et al. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke[J]. Stroke, 2005, 36(12): 2681-2686. DOI: 10.1161/01.STR. 0000189658.51972.34.
29.Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and Meta-analysis[J]. J Neuroeng Rehabil, 2022, 19(1): 24. DOI: 10.1186/s12984-022-00999-4.
30.Kim YH, You SH, Ko MH, et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke[J]. Stroke, 2006, 37(6): 1471-1476. DOI: 10.1161/01.STR. 0000221233.55497.51.
31.Kirton A, Deveber G, Gunraj C, et al. Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: plastic organization and effects of rTMS[J]. Clin Neurophysiol, 2010, 121(11): 1922-1929. DOI: 10.1016/j.clinph.2010.04.021.
32.Plow EB, Sankarasubramanian V, Cunningham DA, et al. Models to tailor brain stimulation therapies in stroke[J]. Neural Plast, 2016, 2016: 4071620. DOI: 10.1155/2016/ 4071620.
33.Nowak DA, Grefkes C, Ameli M, et al. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand[J]. Neurorehabil Neural Repair, 2009, 23(7): 641-656. DOI: 10.1177/ 1545968309336661.
34.Shim J, Lee S. Effects of high-frequency repetitive transcranial magnetic stimulation combined with motor learning on motor function and grip force of the upper limbs and activities of daily living in patients with a subacute stroke[J]. Int J Environ Res Public Health, 2023, 20(12): 6093. DOI: 10.3390/ijerph20126093.
35.Wang Q, Zhang D, Zhao YY, et al. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: a randomized clinical trial[J]. Brain Stimul, 2020, 13(4): 979-986. DOI: 10.1016/j.brs. 2020.03.020.
36.Kakuda W, Abo M, Nakayama Y, et al. High-frequency rTMS using a double cone coil for gait disturbance[J]. Acta Neurol Scand, 2013, 128(2): 100-106. DOI: 10.1111/ane. 12085.
37.Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: rationale, feasibility, and state of the art[J]. Neurorehabil Neural Repair, 2016, 30(1): 71-82. DOI: 10.1177/ 1545968315586464.
38.Wang RY, Tseng HY, Liao KK, et al. rTMS combined with task-oriented training to improve symmetry of interhemispheric corticomotor excitability and gait performance after stroke: a randomized trial[J]. Neurorehabil Neural Repair, 2012, 26(3): 222-230. DOI: 10.1177/1545968311423265.
39.Tung YC, Lai CH, Liao CD, et al. Repetitive transcranial magnetic stimulation of lower limb motor function in patients with stroke: a systematic review and Meta-analysis of randomized controlled trials[J]. Clin Rehabil, 2019, 33(7): 1102-1112. DOI: 10.1177/0269215519835889.
40.Tikka SK, Nizamie SH, Venkatesh BG, et al. Safety and efficacy of adjunctive Theta burst repetitive transcranial magnetic stimulation to right inferior parietal lobule in schizophrenia patients with first-rank symptoms: a pilot, exploratory study[J]. J ECT, 2017, 33(1): 43-51. DOI: 10.1097/YCT.0000000000000343.
41.Liu Y, Li H, Zhang J, et al. A Meta-analysis: whether repetitive transcranial magnetic stimulation improves dysfunction caused by stroke with lower limb spasticity[J]. Evid Based Complement Alternat Med, 2021, 2021: 7219293. DOI: 10.1155/2021/7219293.
42.Guo Z, Jin Y, Bai X, et al. Distinction of high-and low-frequency repetitive transcranial magnetic stimulation on the functional reorganization of the motor network in stroke patients[J]. Neural Plast, 2021, 2021: 8873221. DOI: 10.1155/2021/8873221.
43.Long H, Wang H, Zhao C, et al. Effects of combining high-and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke[J]. Restor Neurol Neurosci, 2018, 36(1): 21-30. DOI: 10.3233/RNN-170733.
44.Roth Y, Zangen A, Hallett M. A coil design for transcranial magnetic stimulation of deep brain regions[J]. J Clin Neurophysiol, 2002, 19(4): 361-370. DOI: 10.1097/ 00004691-200208000-00008.
45.Chieffo R, De Prezzo S, Houdayer E, et al. Deep repetitive transcranial magnetic stimulation with H-coil on lower limb motor function in chronic stroke: a pilot study[J]. Arch Phys Med Rehabil, 2014, 95(6): 1141-1147. DOI: 10.1016/j.apmr.2014.02.019.
46.Chieffo R, Giatsidis F, Santangelo R, et al. Repetitive transcranial magnetic stimulation with H-coil coupled with cycling for improving lower limb motor function after stroke: an exploratory study[J]. Neuromodulation, 2021, 24(5): 916-922. DOI: 10.1111/ner.13228.
47.Ørskov S, Bostock H, Howells J, et al. Comparison of figure-of-8 and circular coils for threshold tracking transcranial magnetic stimulation measurements[J]. Neurophysiol Clin, 2021, 51(2): 153-160. DOI: 10.1016/j.neucli.2021.01.001.
48.Hanlon C. Blunt or precise? A note about the relative precision of figure-of-eight rTMS coils[J]. Brain Stimul, 2017, 10(2): 338-339. DOI: 10.1016/j.brs.2016.12.015.
49.Menardi A, Ozdemir RA, Momi D, et al. Effect of group-based vs individualized stimulation site selection on reliability of network-targeted TMS[J]. Neuroimage, 2022, 264: 119714. DOI: 10.1016/j.neuroimage.2022.119714.
50.Cash RFH, Weigand A, Zalesky A, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression[J]. Biol Psychiatry, 2021, 90(10): 689-700. DOI: 10.1016/j.biopsych.2020. 05.033.
51.Avenanti A, Coccia M, Ladavas E, et al. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial[J]. Neurology, 2012, 78(4): 256-264. DOI: 10.1212/WNL.0b013e3182436558.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20242966
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20242415
-
An analysis of disease burden and risk factors of chronic kidney disease in China from 1990 to 2021
Sep. 30, 20242279
-
Construction and clinical teaching application of virtual patient system: based on artificial intelligence LLM technology
Jul. 30, 20241815
-
Characteristics of lower limb surface electromyography in patients with knee osteoarthritis and progress in their exercise rehabilitation
Aug. 31, 20241782
-
Analysis of the disease burden of neonatal encephalopathy due to birth asphyxia and trauma in China from 1990 to 2019
Aug. 31, 20241683
-
Research progress on the role and treatment of CD24 in the tumor microenvironment
Aug. 31, 20241604
-
Risk factors and prediction model construction for malnutrition in long-term bedridden elderly patients
Aug. 31, 20241581