Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress on the mechanism and potential treatment strategies of surgical stress promotes tumor recurrence and metastasis

Published on Sep. 30, 2024Total Views: 107 timesTotal Downloads: 50 timesDownloadMobile

Author: QI Chao 1 LIU Zilong 2

Affiliation: 1. Department of Pharmacy, Wuhan No.1 Hospital, Wuhan 430022, China 2. Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China

Keywords: Surgical stress Tumor Recurrence Metastasis Treatment strategies

DOI: 10.12173/j.issn.1004-5511.202406100

Reference: Qi C, Liu ZL. Research progress on the mechanism and potential treatment strategies of surgical stress promotes tumor recurrence and metastasis[J]. Yixue Xinzhi Zazhi, 2024, 34(9): 1041-1048. DOI: 10.12173/j.issn.1004-5511.202406100.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Surgical stress is one of the key factors that promote tumor metastasis and recurrence. Adopting corresponding treatment strategies based on the mechanism of surgical stress promoting tumor metastasis and recurrence is of great significance for improving the postoperative prognosis of tumor patients. This article summarized the mechanisms that may affect surgical stress-induced tumor metastasis and recurrences, such as shedding and colonization of circulating tumor cells, changes in postoperative immune microenvironment and postoperative endocrine hormone levels. It also outlined the treatment strategies related to postoperative hormone levels and cytokine regulation, immunotherapy, and tumor vaccines to provide references for the treatment of tumor metastasis and recurrence after surgery.

Full-text
Please download the PDF version to read the full text: download
References

1.Luo Y, Yin S, Lu J, et al. Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment[J]. Cancer Cell Int, 2021, 21(1): 386. DOI: 10.1186/s12935-021-02085-6.

2.Seth R, Tai LH, Falls T, et al. Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model[J]. Ann Surg, 2013, 258(1): 158-168. DOI: 10.1097/SLA.0b013e31826fcbdb.

3.Wu CF, Fu JY, Yeh CJ, et al. Recurrence risk factors analysis for stage I non-small cell lung cancer[J]. Medicine (Baltimore), 2015, 94(32): e1337. DOI: 10.1097/MD.0000000000001337.

4.Tang F, Tie Y, Lan TX, et al. Surgical treatment of osteosarcoma induced distant pre-metastatic niche in lung to facilitate the colonization of circulating tumor cells[J]. Adv Sci (Weinh), 2023, 10(28): e2207518. DOI: 10.1002/advs.202207518.

5.Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy[J]. Anticancer Agents Med Chem, 2016, 16(1): 101-107. DOI: 10.2174/1871520615666150824153523.

6.Yang F, Hua Q, Zhu X, et al. Surgical stress induced tumor immune suppressive environment[J]. Carcinogenesis, 2024, 45(4): 185-198. DOI: 10.1093/carcin/bgae012.

7.Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance[J]. Signal Transduct Target Ther, 2021, 6(1): 404. DOI: 10.1038/s41392-021-00817-8.

8.Han Z, Dong Y, Lu J, et al. Role of hypoxia in inhibiting dendritic cells by VEGF signaling in tumor microenvironments: mechanism and application[J]. Am J Cancer Res, 2021, 11(8): 3777-3793. https://pubmed.ncbi.nlm.nih.gov/34522449/.

9.Yang X, Zhang Y, Zhang Y, et al. The key role of exosomes on the pre-metastatic niche formation in tumors[J]. Front Mol Biosci, 2021, 8: 703640. DOI: 10.3389/fmolb.2021. 703640.

10.Zhong Y, Ma T, Qiao T, et al. Role of phenotypes of circulating tumor cells in the diagnosis and treatment of colorectal cancer[J]. Cancer Manag Res, 2021, 13: 7077-7085. DOI: 10.2147/CMAR.S316544.

11.Adachi H, Ito H, Sawabata N. Circulating tumor cells and the non-touch isolation technique in surgery for non-small-cell lung cancer[J]. Cancers (Basel), 2022, 14(6): 1448. DOI: 10.3390/cancers14061448.

12.Oosterling SJ, van der Bij GJ, van Egmond M, et al. Surgical trauma and peritoneal recurrence of colorectal carcinoma[J]. Eur J of Surg Onc, 2005, 31(1): 29-37. DOI: 10.1016/j.ejso.2004.10.005.

13.Wang L, Li Y, Xu J, et al. Quantified postsurgical small cell size CTCs and EpCAM+ circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse[J]. Cancer Lett, 2018, 412: 99-107. DOI: 10.1016/j.canlet.2017.10.004.

14.Liu X, Taftaf R, Kawaguchi M, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models[J]. Cancer Discov, 2019, 9(1): 96-113. DOI: 10.1158/2159-8290.CD-18-0065.

15.Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the 'seed and soil' theory of metastatic dissemination[J]. Clin Exp Med, 2006, 6(4): 145-149. DOI: 10.1007/s10238-006-0117-4.

16.Badodekar N, Sharma A, Patil V, et al. Angiogenesis induction in breast cancer: a paracrine paradigm[J]. Cell Biochem Funct, 2021, 39(7): 860-873. DOI: 10.1002/cbf.3663.

17.Hiller JG, Perry NJ, Poulogiannis G, et al. Perioperative events influence cancer recurrence risk after surgery[J]. Nat Rev Clin Oncol, 2018, 15(4): 205-218. DOI: 10.1038/nrclinonc.2017.194.

18.Kurosawa S, Kato M. Anesthetics, immune cells, and immune responses[J]. J Anesth, 2008, 22(3): 263-277. DOI: 10.1007/s00540-008-0626-2.

19.Zhou L, Li Y, Li X, et al. Propranolol attenuates surgical stress-induced elevation of the regulatory T cell response in patients undergoing radical mastectomy[J]. J Immunol, 2016: 3460-3469. DOI: 10.4049/jimmunol.1501677.

20.Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression-implications for anticancer therapy[J]. Nat Rev Clin Oncol, 2019, 16: 356-371. DOI: 10.1038/s41571-019-0175-7.

21.Papak I, Chruściel E, Dziubek K, et al. What inhibits natural killers' performance in tumour[J]. Int J of Mol Sci, 2022, 23(13): 7030. DOI: 10.3390/ijms23137030.

22.Ogasawara M, Yamasaki-Yashiki S, Hamada M, et al. Betulin attenuates TGF-β1-and PGE2-mediated inhibition of NK cell activity to suppress tumor progression and metastasis in mice[J]. Biol Pharm Bull, 2022, 45(3): 339-353. DOI: 10.1248/bpb.b21-00921.

23.Goldfarb Y, Sorski L, Benish M, et al. Improving postoperative immune status and resistance to cancer metastasis a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses[J].  Ann Surg, 2011, 253(4): 798-810. DOI: 10.1097/SLA.0b013e318211d7b5.

24.Shi Q, Shen Q, Liu Y, et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal cathepsin B to promote cancer metastasis and chemoresistance[J]. Cancer Cell, 2022, 40(10): 1207-1222. e10. DOI: 10.1016/j.ccell.2022.08.012.

25.Tang F, Tie Y, Tu C, et al. Surgical trauma-induced immunosuppression in cancer: recent advances and the potential therapies[J]. Clin Transl Med, 2020, 10(1): 199-223. DOI: 10.1002/ctm2.24.

26.Longhini F, Bruni A, Garofalo E, et al. Anesthetic strategies in oncological surgery: not only a simple sleep, but also impact on immunosuppression and cancer recurrence[J]. Cancer Manag Res, 2020, 12: 931-940. DOI: 10.2147/CMAR.S237224.

27.Desborough JP. The stress response to trauma and surgery  [J]. Br J Anaesth, 2000, 85(1): 109-117. DOI: 10.1093/bja/85.1.109.

28.Buvanendran A, Kroin JS, Berger RA, et al. Upregulation of prostaglandin E2 and interleukins in the central nervous system and peripheral tissue during and after surgery in humans [J]. Anesthesiology, 2006, 104(3): 403-410. DOI: 10.1097/00000542-200603000-00005.

29.Conceição F, Sousa DM, Paredes J, et al. Sympathetic activity in breast cancer and metastasis: partners in crime [J]. Bone Res, 2021, 9(1): 9. DOI: 10.1038/s41413-021-00137-1.

30.Wackerhage H, Christensen JF, Ilmer M, et al. Cancer catecholamine conundrum[J]. Trends Cancer, 2022, 8(2): 110-122. DOI: 10.1016/j.trecan.2021.10.005.

31.Jara-Gutiérrez Á, Baladrón V. The role of prostaglandins in different types of cancer[J]. Cells, 2021, 10(6): 1487. DOI: 10.3390/cells10061487.

32.Wang C, Shen Y, Ni J, et al. Effect of chronic stress on tumorigenesis and development[J]. Cell Mol Life Sci, 2022, 79(9): 485. DOI: 10.1007/s00018-022-04455-3.

33.Mo S, Ku HJ, Choi SH, et al. 470 nm LED irradiation inhibits the invasiveness of CD133-positive human colorectal cancer stem cells by suppressing the cyclooxygenase-2/prostaglandin E2 pathway[J]. Anticancer Res, 2021, 41(3): 1407-1420. DOI: 10.21873/anticanres.14898.

34.Kim R, Kawai A, Wakisaka M, et al. Current status and prospects of anesthesia and breast cancer: does anesthetic technique affect recurrence and survival rates in breast cancer surgery?[J]. Front Oncol, 2022, 12: 795864. DOI: 10.3389/fonc.2022.795864.

35.Tai YH, Wu HL, Mandell MS, et al. The association of allogeneic blood transfusion and the recurrence of hepatic cancer after surgical resection[J]. Anaesthesia, 2020, 75(4): 464-471. DOI: 10.1111/anae.14862.

36.Cho JS, Lee MH, Kim SI, et al. The effects of perioperative anesthesia and analgesia on immune function in patients undergoing breast cancer resection: a prospective randomized study[J]. Int J Med Sci, 2017, 14(10): 970-976. DOI: 10.7150/ijms.20064.

37.Grandhi RK, Perona B. Mechanisms of action by which local anesthetics reduce cancer recurrence: a systematic review[J]. Pain Med, 2020, 21(2): 401-414. DOI: 10.1093/pm/pnz139.

38.Dianat-Moghadam H, Mahari A, Heidarifard M, et al. NK cells-directed therapies target circulating tumor cells and metastasis[J]. Cancer Lett, 2021, 497: 41-53. DOI: 10.1016/j.canlet.2020.09.021.

39.Liu JF, Jamieson GG, Wu TC, et al. A preliminary study on the postoperative survival of patients given aspirin after resection for squamous cell carcinoma of the esophagus or adenocarcinoma of the cardia[J]. Ann Surg Oncol, 2009, 16(5): 1397-1402. DOI: 10.1245/s10434-009-0382-z.

40.Donlon NE, Davern M, Hayes C, et al. The immune response to major gastrointestinal cancer surgery and potential implications for adjuvant immunotherapy[J]. Crit Rev Oncol Hemat, 2022, 175: 103729. DOI: 10.1016/j.critrevonc.2022.103729.

41.Sooriakumaran P, Coley HM, Fox SB, et al. A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer[J]. Anticancer Res, 2009, 29(5): 1483-1488. https://pubmed.ncbi.nlm.nih.gov/19443354/

42.Panigrahy D, Gartung A, Yang J, et al. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases[J]. J Clin Invest, 2019, 129(7): 2964-2979. DOI: 10.1172/JCI127282.

43.Childers WK, Hollenbeak CS, Cheriyath P. β-blockers reduce breast cancer recurrence and breast cancer death: a Meta-analysis[J]. Clin Breast Cancer, 2015, 15(6): 426-431. DOI: 10.1016/j.clbc.2015.07.001.

44.De Giorgi V, Grazzini M, Benemei S, et al. Propranolol for off-label treatment of patients with melanoma: results from a cohort study[J]. JAMA Oncol, 2018, 4(2): e172908. DOI: 10.1001/jamaoncol.2017.2908.

45.Shaashua L, Shabat-Simon M, Haldar R, et al. Perioperative COX-2 and β-Adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial[J]. Clin Cancer Res, 2017, 23(16): 4651-4661. DOI: 10.1158/1078-0432.CCR-17-0152.

46.Karime C, Wang J, Woodhead G, et al. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma[J]. Expert Opin Inv Drug, 2022, 31(1): 1-13.DOI: 10.1080/13543784.2022.2019706.

47.Yin W, Li Y, Song Y, et al. CCRL2 promotes antitumor T-cell immunity via amplifying TLR4-mediated immunostimulatory macrophage activation[J]. Proc Natl Acad Sci USA, 2021, 118(16): e2024171118. DOI: 10.1073/pnas.2024171118.

48.Tang S, Qin C, Hu H, et al. Immune checkpoint inhibitors in non-small cell lung cancer: progress, challenges, and prospects[J]. Cells, 2022, 11(3): 320. DOI: 10.3390/cells11030320.

49.Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer[J]. Genome Med, 2021, 13(1): 107. DOI: 10.1186/s13073-021-00923-w.

50.崔丽敏, 赵冀安. PD-1抗体联合治疗对肝切除术后难治性复发肝癌患者生存率及免疫功能的影响[J]. 解放军医药杂志, 2022, 34(2): 36-39, 52. [Cui LM, Zhao JA. Effects of PD-1 antibody combined therapy on survival rate and immune function of patients with refractory recurrent liver cancer after hepatectomy[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2022, 34(2): 36-39, 52.] DOI: 10.3969/j.issn.2095-140X.2022.02.008.

51.Eguren-Santamaria I, Sanmamed MF, Goldberg SB, et  al. PD-1/PD-L1 blockers in NSCLC brain metastases: challenging paradigms and clinical practice[J]. Clin Cancer Res, 2020, 26(16): 4186-4197. DOI: 10.1158/1078-0432.CCR-20-0798.

52.陈建红, 唐成武. 胸腺法新对结直肠癌术后化疗患者免疫功能及生活质量的影响[J]. 中国现代医生, 2018, 56(6): 82-85. [Chen JH, Tang CW. Effect of thymalfasin on immune function and quality of life in patients of colorectal cancer with postoperative chemotherapy[J]. China Modern Doctor, 2018, 56(6): 82-85.] DOI: CNKI:SUN:ZDYS.0.2018-06-024.

53.陈小均, 孔涛, 王成李, 等. 非肌层浸润性膀胱癌经尿道膀胱肿瘤切除术后应用中药序贯疗法的效果观察[J]. 北京中医药, 2023, 42(12):1382-1385. [Chen XJ, Kong T, Wang CL, et al. Study on the efficacy of sequential Chinese medicine therapy in patients with non-muscle-invasive bladder cancer[J]. Beijing Journal of Traditional Chinese Medicine, 2023, 42(12): 1382-1385.] DOI: 10.16025/j.1674-1307.2023.12.028.

54.李敏献, 赵刚. 中药方剂联合腹腔镜甲状腺肿瘤切除术对甲状腺肿瘤患者的临床效果研究[J]. 中华中医药学刊, 2014, 32(6): 1335-1337. [Li MX, Zhao G. Chinese decoction and laparoscopic resection of thyroid cancer in patients with thyroid cancer[J]. Chines Archives of Traditional Chinese Medicine, 2014, 32(6): 1335-1337.] DOI: 10.13193/j.issn.1673-7717.2014.06.026.

55.Hernandez R, Põder J, LaPorte KM, et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer[J]. Nat Rev Immunol, 2022, 22(10): 614-628. DOI: 10.1038/s41577-022-00680-w.

56.Yan WL, Shen KY, Tien CY, et al. Recent progress in GM-CSF-based cancer immunotherapy[J]. Immunotherapy, 2017, 9(4): 347-360. DOI: 10.2217/imt-2016-0141.

57.Zhang W, Borcherding N, Kolb R. IL-1 signaling in tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1240: 1-23. DOI: 10.1007/978-3-030-38315-2_1.

58.Meng Z, Zhang Y, She J, et al. Ultrasound-mediated remotely controlled nanovaccine delivery for tumor vaccination and individualized cancer immunotherapy[J]. Nano Lett, 2021, 21(3): 1228-1237. DOI: 10.1021/acs.nanolett.0c03646.

59.Bakos O, Lawson C, Rouleau S, et al. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity[J]. J Immunother Cancer, 2018, 6(1): 86. DOI: 10.1186/s40425-018-0398-7.

60.Goldfarb Y, Levi B, Sorski L, et al. CpG-C immunotherapeutic efficacy is jeopardized by ongoing exposure to stress: potential implications for clinical use[J]. Brain Behav Immun, 2011, 25(1): 67-76. DOI: 10.1016/j.bbi.2010.07.242.

61.Avraham R, Benish M, Inbar S, et al. Synergism between immunostimulation and prevention of surgery-induced immune suppression: an approach to reduce post-operative tumor progression[J]. Brain Behav Immun, 2010, 24(6): 952-958. DOI: 10.1016/j.bbi.2010.03.010.