Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress of immune checkpoint inhibitors in the treatment of glioblastoma

Published on Jun. 01, 2024Total Views: 497 timesTotal Downloads: 223 timesDownloadMobile

Author: JIA Xiaorong ZHANG Gong

Affiliation: Department of Radiotherapy, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China

Keywords: Glioblastoma Immunotherapy Immunocyte Immune checkpoint inhibitors

DOI: 10.12173/j.issn.1004-5511.202401092

Reference: Jia XR, Zhang G. Research progress of immune checkpoint inhibitors in the treatment of glioblastoma [J]. Yixue Xinzhi Zazhi, 2024, 34(5): 593-602. DOI: 10.12173/j.issn.1004-5511.202401092. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Glioblastoma (GBM) is the most invasive glioma in the central nervous system. Maximum surgical resection, chemotherapy and radiotherapy are currently the standard treatment for GBM. Due to the unique immune environment of the central nervous system, the application of immunotherapy in GBM is facing challenges. Immune checkpoint inhibitors (ICIs) is one of the main immunotherapy strategies for GBM. Clarifying the mechanism of ICIs in GBM and developing effective therapeutic targets are of great significance to prolong the survival of GBM patients. In the study, we summarize the research progress of blood-brain barrier, tumor microenvironment, immune cells, ICIs and their combination therapy in GBM to provide reference for GBM immunotherapy.

Full-text
Please download the PDF version to read the full text: download
References

1.高梓洋, 肖媛, 祝菲, 等. 影像组学诊断胶质母细胞瘤的Meta分析[J]. 中国循证医学杂志, 2022, 22(2): 232-242. [Gao ZY, Xiao Y, Zhu F, et al. Meta-analysis of imaging omics for the diagnosis of glioblastoma[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(2): 232-242.] DOI: 10.7507/1672-2531.202108134.

2.Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: a review[J]. JAMA, 2023, 329(7): 574-587. DOI: 10.1001/jama.2023.0023.

3.Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1): 1-10. DOI: 10.1016/j.immuni.2013.07.012.

4.Arrieta VA, Dmello C, McGrail DJ, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment[J]. J Clin Invest, 2023, 133(2): e163447. DOI: 10.1172/JCI163447.

5.Frederico SC, Darling C, Bielanin JP, et al. Neoadjuvant immune checkpoint inhibition in the management of glioblastoma: exploring a new frontier[J]. Front Immunol, 2023, 14(2): 1057567. DOI: 10.3389/fimmu.2023.1057567.

6.Ahmed MH, Canney M, Carpentier A, et al. Unveiling the enigma of the blood-brain barrier in glioblastoma: current advances from preclinical and clinical studies[J]. Curr Opin Oncol, 2023, 35(6): 522-528. DOI: 10.1097/CCO.0000000000000990.

7.Kasenda B, König D, Manni M, et al. Targeting immunoliposomes to EGFR-positive glioblastoma[J]. ESMO Open, 2022, 7(1): 100365. DOI: 10.1016/j.esmoop. 2021.100365.

8.Cui J, Wang X, Li J, et al. Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma[J]. ACS Nano, 2023. DOI: 10.1021/acsnano.2c10219.

9.Bikfalvi A, da Costa CA, Avril T, et al. Challenges in glioblastoma research: focus on the tumor microenvironment[J]. Trends Cancer, 2023, 9(1): 9-27. DOI: 10.1016/j.trecan.2022.09.005.

10.DeCordova S, Shastri A, Tsolaki AG, et al. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma[J]. Front Immunol, 2020, 11: 1402. DOI: 10.3389/fimmu.2020.01402.

11.Wu L, Wu W, Zhang J, et al. Natural coevolution of tumor and immunoenvironment in glioblastoma[J]. Cancer Discov, 2022, 12(12): 2820-2837. DOI: 10.1158/2159-8290.CD-22-0196.

12.Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 771-785. DOI: 10.1038/nrm3902.

13.De Leo A, Ugolini A, Veglia F. Myeloid cells in glioblastoma microenvironment[J]. Cells, 2020, 10(1): 18. DOI: 10.3390/cells10010018.

14.Lu-Emerson C, Snuderl M, Kirkpatrick ND, et al. Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma[J]. Neuro Oncol, 2013, 15(8): 1079-1087. DOI: 10.1093/neuonc/not082.

15.Rashidi A, Billingham LK, Zolp A, et al. Myeloid cell-derived creatine in the hypoxic niche promotes glioblastoma growth[J]. Cell Metab, 2024, 36(1): 62-77. e8. DOI: 10.1016/j.cmet.2023.11.013.

16.Massara M, Persico P, Bonavita O, et al. Neutrophils in gliomas[J]. Front Immunol, 2017, 8: 1349. DOI: 10.3389/fimmu.2017.01349.

17.Wu L, Zhang XH. Tumor-associated neutrophils and macrophages-heterogenous but not chaotic[J]. Front Immunol, 2020, 11: 553967. DOI: 10.3389/fimmu. 2020.553967.

18.Khan S, Mittal S, McGee K, et al. Role of neutrophils and myeloid-derived suppressor cells in glioma progression and treatment resistance[J]. Int J Mol Sci, 2020, 21(6): 1954. DOI: 10.3390/ijms21061954.

19.Wang J, Gong R, Zhao C, et al. Human FOXP3 and tumour microenvironment[J]. Immunology, 2023, 168(2): 248-255. DOI: 10.1111/imm.13520.

20.Li C, Jiang P, Wei S, et al. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects[J]. Mol Cancer, 2020, 19(1): 116. DOI: 10.1186/s12943-020-01234-1.

21.Kelly WJ, Giles AJ, Gilbert M. T lymphocyte-targeted immune checkpoint modulation in glioma[J]. J Immunother Cancer, 2020, 8(1): e000379. DOI: 10.1136/jitc-2019-000379.

22.Qiu Y, Ke S, Chen J, et al. FOXP3+ regulatory T cells and the immune escape in solid tumours[J]. Front Immunol, 2022, 13(2): 982986. DOI: 10.3389/fimmu.2022.982986.

23.Allison M, Mathews J, Gilliland T, et al. Natural killer cell-mediated immunotherapy for leukemia[J]. Cancers (Basel), 2022, 14(3): 843. DOI: 10.3390/cancers14030843.

24.Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, et al. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion[J]. Cytokine, 2023, 170: 156334. DOI: 10.1016/j.cyto.2023.156334.

25.Burster T, Gärtner F, Bulach C, et al. Regulation of MHC I molecules in glioblastoma cells and the sensitizing of NK cells[J]. Pharmaceuticals (Basel), 2021, 14(3): 236. DOI: 10.3390/ph14030236.

26.Martin-Hijano L, Sainz B Jr. The interactions between cancer stem cells and the innate interferon signaling pathway[J]. Front Immunol, 2020, 11: 526. DOI: 10.3389/fimmu.2020.00526.

27.Del Prete A, Salvi V, Soriani A, et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing[J]. Cell Mol Immunol, 2023, 20(5): 432-447. DOI: 10.1038/s41423-023-00990-6.

28.Lee S, Kim TD. Breakthroughs in cancer immunotherapy: an overview of T cell, NK cell, Mφ, and DC-based treatments[J]. Int J Mol Sci, 2023, 24(24): 17634. DOI: 10.3390/ijms242417634.

29.Wu Z, Zhou J, Xiao Y, et al. CD20+CD22+ADAM28+B cells in tertiary lymphoid structures promote immunotherapy response[J]. Front Immunol, 2022, 13: 865596. DOI: 10.3389/fimmu.2022.865596.

30.Zhang P, Miska J, Lee-Chang C, et al. Therapeutic targeting of tumor-associated myeloid cells synergizes with radiation therapy for glioblastoma[J]. Proc Natl Acad Sci USA, 2019, 116(47): 23714-23723. DOI: 10.1073/pnas. 1906346116.

31.Ghouzlani A, Kandoussi S, Tall M, et al. Immune checkpoint inhibitors in human glioma microenvironment[J]. Front Immunol, 2021, 12(1): 679425. DOI: 10.3389/fimmu.2021.679425.

32.Yasinjan F, Xing Y, Geng H, et al. Immunotherapy: a promising approach for glioma treatment[J]. Front Immunol, 2023, 14: 1255611. DOI: 10.3389/fimmu.2023.1255611.

33.Duerinck J, Schwarze JK, Awada G, et al. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: a phase I clinical trial[J]. J Immunother Cancer, 2021, 9(6): e002296. DOI: 10.1136/jitc-2020-002296.

34.Yang T, Kong Z, Ma W. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential[J]. Hum Vaccin Immunother, 2021, 17(2): 546-553. DOI: 10.1080/21645515.2020.1782692.

35.Yi K, Cui X, Liu X, et al. PTRF/Cavin-1 as a novel RNA-binding protein expedites the NF-κB/PD-L1 axis by stabilizing lncRNA NEAT1, contributing to tumorigenesis and immune evasion in glioblastoma[J]. Front Immunol, 2022, 12: 802795. DOI: 10.3389/fimmu.2021.802795.

36.Yang T, Kong Z, Ma W. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges and potential[J]. Hum Vaccin Immunother, 2020, 17(2): 546-553. DOI: 10.1080/21645515.2020.1782692.

37.Arrieta VA, Dmello C, McGrail DJ, et al. Immune checkpoint blockade in glioblastoma: from tumor heterogeneity to personalized treatment[J]. J Clin Invest, 2023, 133(2): e163447. DOI: 10.1172/JCI163447.

38.Omuro A, Brandes AA, Carpentier AF, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial[J]. Neuro Oncol, 2023, 25(1): 123-134. DOI: 10.1093/neuonc/ noac099.

39.Lim M, Weller M, Idbaih A, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter[J]. Neuro Oncol, 2022, 24(11): 1935-1949. DOI: 10.1093/neuonc/noac116.

40.Yuan B, Wang G, Tang X, et al. Immunotherapy of glioblastoma: recent advances and future prospects[J]. Hum Vaccin Immunother, 2022, 18(5): 2055417. DOI: 10.1080/21645515.2022.2055417.

41.Reardon DA, Gokhale PC, Klein SR, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model[J]. Cancer Immunol Res, 2016, 4(2): 124-135. DOI: 10.1158/2326-6066.CIR-15-0151.

42.Liu F, Huang J, Liu X, et al. CTLA-4 correlates with immune and clinical characteristics of glioma[J]. Cancer Cell Int, 2020, 20: 7. DOI: 10.1186/s12935-019-1085-6.

43.Brown NF, Ng SM, Brooks C, et al. A phase II open label, randomised study of ipilimumab with temozolomide versus temozolomide alone after surgery and chemoradiotherapy in patients with recently diagnosed glioblastoma: the Ipi-Glio trial protocol[J]. BMC Cancer, 2020, 20(1): 198. DOI: 10.1186/s12885-020-6624-y.

44.Woroniecka K, Fecci PE. Immuno-synergy? Neoantigen vaccines and checkpoint blockade in glioblastoma[J]. Neuro Oncol, 2020, 22(9): 1233-1234. DOI: 10.1093/neuonc/noaa170.

45.Huang B, Li X, Li Y, et al. Current immunotherapies for glioblastoma multiforme[J]. Front Immunol, 2021, 11: 603911. DOI: 10.3389/fimmu.2020.603911.

46.Guo Q, Shen S, Guan G, et al. Cancer cell intrinsic TIM-3 induces glioblastoma progression[J]. iScience, 2022, 25(11): 105329. DOI: 10.1016/j.isci.2022.105329.

47.Mahmoud AB, Ajina R, Aref S, et al. Advances in immunotherapy for glioblastoma multiforme[J]. Front Immunol, 2022, 13(1): 944452. DOI: 10.3389/fimmu.2022.944452.

48.Mair MJ, Kiesel B, Feldmann K, et al. LAG-3 expression in the inflammatory microenvironment of glioma[J]. J Neurooncol, 2021, 152(3): 533-539. DOI: 10.1007/s11060-021-03721-x.

49.Odia Y, Cavalcante L, Safran H, et al. Malignant glioma subset from actuate 1801: phase I/II study of 9-ING-41, GSK-3β inhibitor, monotherapy or combined with chemotherapy for refractory malignancies[J]. Neurooncol Adv, 2022, 4(1): vdac012. DOI: 10.1093/noajnl/vdac012.

50.Harris-Bookman S, Mathios D, Martin AM, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma[J]. Int J Cancer, 2018, 143(3): 3201-3208. DOI: 10.1002/ijc.31661.

51.Mair MJ, Kiesel B, Feldmann K, et al. LAG-3 expression in the inflammatory microenvironment of glioma[J]. J Neurooncol, 2021, 152(3): 533-539. DOI: 10.1007/s11060-021-03721-x.

52.Zhai L, Bell A, Ladomersky E, et al. Tumor cell IDO enhances immune suppression and decreases survival independent of tryptophan metabolism in glioblastoma[J]. Clin Cancer Res, 2021, 27(23): 6514-6528. DOI: 10.1158/ 1078-0432.CCR-21-1392.

53.Hosseinalizadeh H, Mahmoodpour M, Samadani AA, et al. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: mechanism of action and immunotherapeutic strategies[J]. Med Oncol, 2022, 39(9): 130. DOI: 10.1007/s12032-022-01724-w.

54.Thummalapalli R, Heumann T, Stein J, et al. Hemophagocytic lymphohistiocytosis secondary to PD-1 and IDO inhibition in a patient with refractory glioblastoma[J]. Case Rep Oncol, 2020, 13(2): 508-514. DOI: 10.1159/000507281.

55.Tian Z, Yang Z, Jin M, et al. Identification of cytokine-predominant immunosuppressive class and prognostic risk signatures in glioma[J]. J Cancer Res Clin Oncol, 2023, 149(14): 13185-13200. DOI: 10.1007/s00432-023-05173-4.

56.Lucca LE, Lerner BA, Park C, et al. Differential expression of the T-cell inhibitor TIGIT in glioblastoma and MS[J]. Neurol Neuroimmunol Neuroinflamm, 2020, 7(3): e712. DOI: 10.1212/NXI.0000000000000712.

57.Hung AL, Maxwell R, Theodros D, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM[J]. Oncoimmunology, 2018, 7(8): e1466769. DOI: 10.1080/2162402X.2018.1466769.

58.Hung AL, Garzon-Muvdi T, Lim M. Biomarkers and immunotherapeutic targets in glioblastoma[J]. World Neurosurg, 2017, 102: 494-506. DOI: 10.1016/j.wneu. 2017.03.011.

59.Puigdelloses M, Garcia-Moure M, Labiano S, et al. CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models[J]. J Immunother Cancer, 2021, 9(7): e002644. DOI: 10.1136/jitc-2021-002644.

60.Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease[J]. Nat Rev Immunol, 2014, 14(10): 653-666. DOI: 10.1038/nri3737.

61.Lim J, Sari-Ak D, Bagga T. Siglecs as therapeutic targets in cancer[J]. Biology (Basel), 2021, 10(11): 1178. DOI: 10.3390/biology10111178.

62.Feng H, Feng J, Han X, et al. The potential of siglecs and sialic acids as biomarkers and therapeutic targets in tumor immunotherapy[J]. Cancers (Basel), 2024, 16(2): 289. DOI: 10.3390/cancers16020289.

63.Mei Y, Wang X, Zhang J, et al. Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response[J]. Nat Cancer, 2023, 4(9): 1273-1291. DOI: 10.1038/s43018-023-00598-9.

64.Schmassmann P, Roux J, Buck A, et al. Targeting the Siglec-sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma[J]. Sci Transl Med, 2023, 15(705): eadf5302. DOI: 10.1126/scitranslmed.adf5302.

65.Wu Y, Huang W, Xie Y, et al. Siglec-9, a putative immune checkpoint marker for cancer progression across multiple cancer types[J]. Front Mol Biosci, 2022, 9: 743515. DOI: 10.3389/fmolb.2022.743515.

66.Muftuoglu Y, Pajonk F. Targeting glioma stem cells[J]. Neurosurg Clin N Am, 2021, 32(2): 283-289. DOI: 10.1016/j.nec.2021.01.002.

67.Lu X, Maturi NP, Jarvius M, et al. Cell-lineage controlled epigenetic regulation in glioblastoma stem cells determines functionally distinct subgroups and predicts patient survival[J]. Nat Commun, 2022, 13(1): 2236. DOI: 10.1038/ s41467-022-29912-2.

68.Uribe D, Niechi I, Rackov G, et al. Adapt to persist: glioblastoma microenvironment and epigenetic regulation on cell plasticity[J]. Biology (Basel), 2022, 11(2): 313. DOI: 10.3390/biology11020313.

69.Fang H, Guo Z, Chen J, et al. Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo[J]. Nat Commun, 2021, 12(1): 6742. DOI: 10.1038/s41467-021-27078-x.

70.Lai J, Fu Y, Tian S, et al. Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice[J]. Mol Ther, 2021, 29(5): 1758-1771. DOI: 10.1016/j.ymthe.2021.02.005.

71.Voloshin T, Schneiderman R.S, Volodin A, et al. Tumor treating fields (TTFields) hinder cancer cell motility through regulation of microtubule and acting dynamics[J]. Cancers(Basel), 2020, 12(10): 3016. DOI: 10.3390/cancers12103016.

72.Kirson ED, Giladi M, Gurvich Z, et al. Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs[J]. Clin Exp Metastasis, 2009, 26(7): 633-640. DOI: 10.1007/s10585-009-9262-y.

73.Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy[J]. Cancer Immunol Immunother, 2020, 69(7): 1191-1204. DOI: 10.1007/s00262-020-02534-7.

74.Leal T, Kotecha R, Ramlau R, et al. Tumor treating fields therapy with standard systemic therapy versus standard systemic therapy alone in metastatic non-small-cell lung cancer following progression on or after platinum-based therapy (LUNAR): a randomised, open-label, pivotal phase 3 study[J]. Lancet Oncol, 2023, 24(9): 1002-1017. DOI: 10.1016/S1470-2045(23)00344-3.

75.Barsheshet Y, Voloshin T, Brant B, et al. Tumor treating fields (TTFields) concomitant with immune checkpoint inhibitors are therapeutically effective in non-small cell lung cancer (NSCLC) in vivo model[J]. Int J Mol Sci, 2022, 23(22): 14073. DOI: 10.3390/ijms232214073.