Microbiota is defined as symbiotic microflora living in specific parts of the human body, with the gut microbiota being one of the largest microbiotas in the human body. In recent years, research on the microbiome has provided new perspectives on human health and disease, with increasing evidence suggesting a link between gut microbiota imbalance and the progression of benign prostatic hyperplasia (BPH). Disruption of the gut microbiota may lead to local or systemic inflammation affecting BPH, with changes in levels of sex hormones, insulin-like growth factor 1 (IGF-1) induced by gut microbiota, and metabolic syndrome (MS) possibly involved in BPH development. Furthermore, alterations in gut microbiota composition during aging and dietary may also be factors influencing BPH. This article focuses on recent advances in research on the gut microbiota and BPH, exploring how gut microbiota is linked to BPH through inflammation, sex hormones, IGF-1, MS, aging, and diet to provide new perspectives and approaches for the prevention and treatment of BPH by interfering with the gut microbiota.
HomeArticlesVol 34,2024 No.5Detail
Relationship and potential mechanisms between gut microbiota and benign prostatic hyperplasia
Published on Jun. 01, 2024Total Views: 1674 timesTotal Downloads: 460 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1. Langan RC. Benign prostatic hyperplasia[J]. Prim Care, 2019, 46(2): 223-232. DOI: 10.1016/j.pop.2019.02.003.
2. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/s0140-6736(20)30925-9.
3. Thursby E, Juge N. Introduction to the human gut microbiota[J]. Biochem J, 2017, 474(11): 1823-1836. DOI: 10.1042/bcj20160510.
4. Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, et al. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies[J]. Gastroenterology, 2021, 160(2): 573-599. DOI: 10.1053/j.gastro.2020.10.057.
5. Cronin O, Molloy MG, Shanahan F. Exercise, fitness, and the gut[J]. Curr Opin Gastroenterol, 2016, 32(2): 67-73. DOI: 10.1097/MOG.0000000000000240.
6. Du Y, Gao Y, Zeng B, et al. Effects of anti-aging interventions on intestinal microbiota[J]. Gut Microbes, 2021, 13(1): 1994835. DOI: 10.1080/19490976.2021.1994835.
7. Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota[J]. Prz Gastroenterol, 2018, 13(2): 85-92. DOI: 10.5114/pg.2018.76005.
8. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease[J]. Nat Rev Microbiol, 2021, 19(1): 55-71. DOI: 10.1038/s41579-020-0433-9.
9. Flint HJ, Duncan SH, Scott KP, et al. Links between diet, gut microbiota composition and gut metabolism[J]. Proc Nutr Soc, 2015, 74(1): 13-22. DOI: 10.1017/S0029665114001463.
10. Matsushita M, Fujita K, Hatano K, et al. Emerging relationship between the gut microbiome and prostate cancer[J]. World J Mens Health, 2023, 41(4): 759-768. DOI: 10.5534/wjmh.220202.
11. Yu J, Hu Q, Liu J, et al. Metabolites of gut microbiota fermenting Poria cocos polysaccharide alleviates chronic nonbacterial prostatitis in rats[J]. Int J Biol Macromol, 2022, 209(Pt B): 1593-1604. DOI: 10.1016/j.ijbiomac.2022.04.029.
12. Bui NN, Li CY, Wang LY, et al. Clostridium scindens metabolites trigger prostate cancer progression through androgen receptor signaling[J]. J Microbiol Immunol Infect, 2023, 56(2): 246-256. DOI: 10.1016/j.jmii.2022.12.009.
13. Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005, 307(5717): 1915-1920. DOI: 10.1126/science.1104816.
14. Cresci GA, Bawden E. Gut microbiome: what we do and don't know[J]. Nutr Clin Pract, 2015, 30(6): 734-746. DOI: 10.1177/0884533615609899.
15. 潘杰, 刘来浩, 牟建伟. 肠道菌群与人类健康研究进展[J]. 山东师范大学学报(自然科学版), 2021, 36(4): 337-365. [Pan J, Liu LH, Mu JW. Research progress of gut microbiota and human health[J]. Journal of Shandong Normal University(Natural Science), 2021, 36(4): 337-365.] DOI: 10.3969/j.issn.1001-4748.2021.04.002.
16. Holland B, Karr M, Delfino K, et al. The effect of the urinary and faecal microbiota on lower urinary tract symptoms measured by the international prostate symptom score: analysis utilising next-generation sequencing[J]. BJU Int, 2020, 125(6): 905-910. DOI: 10.1111/bju.14972.
17. Bajic P, Van Kuiken ME, Burge BK, et al. Male bladder microbiome relates to lower urinary tract symptoms[J]. Eur Urol Focus, 2020, 6(2): 376-382. DOI: 10.1016/j.euf.2018.08.001.
18. Franco JV, Trivisonno L, Sgarbossa NJ, et al. Serenoa repens for the treatment of lower urinary tract symptoms due to benign prostatic enlargement[J]. Cochrane Database Syst Rev, 2023, 6(6): Cd001423. DOI: 10.1002/14651858.CD001423.pub4.
19. Li LY, Han J, Wu L, et al. Alterations of gut microbiota diversity, composition and metabonomics in testosterone-induced benign prostatic hyperplasia rats[J]. Mil Med Res, 2022, 9(1): 12. DOI: 10.1186/s40779-022-00373-4.
20. Guo XP, Yang J, Wu L, et al. Periodontitis relates to benign prostatic hyperplasia via the gut microbiota and fecal metabolome[J]. Front Microbiol, 2023, 14: 1280628. DOI: 10.3389/fmicb.2023.1280628.
21. Takezawa K, Fujita K, Matsushita M, et al. The Firmicutes/Bacteroidetes ratio of the human gut microbiota is associated with prostate enlargement[J]. Prostate, 2021, 81(16): 1287-1293. DOI: 10.1002/pros.24223.
22. Jain S, Samal AG, Das B, et al. Escherichia coli, a common constituent of benign prostate hyperplasia-associated microbiota induces inflammation and DNA damage in prostate epithelial cells[J]. Prostate, 2020, 80(15): 1341-1352. DOI: 10.1002/pros.24063.
23. Xia D, Wang J, Zhao X, et al. Association between gut microbiota and benign prostatic hyperplasia: a two-sample mendelian randomization study[J]. Front Cell Infect Microbiol, 2023, 13: 1248381. DOI: 10.3389/fcimb.2023.1248381.
24. Alexeyev O, Bergh J, Marklund I, et al. Association between the presence of bacterial 16S RNA in prostate specimens taken during transurethral resection of prostate and subsequent risk of prostate cancer (Sweden)[J]. Cancer Causes Control, 2006, 17(9): 1127-1133. DOI: 10.1007/s10552-006-0054-2.
25. Davidsson S, Mölling P, Rider JR, et al. Frequency and typing of propionibacterium acnes in prostate tissue obtained from men with and without prostate cancer[J]. Infect Agent Cancer, 2016, 11: 26. DOI: 10.1186/s13027-016-0074-9.
26. Leheste JR, Ruvolo KE, Chrostowski JE, et al. P. Acnes-driven disease pathology: current knowledge and future directions[J]. Front Cell Infect Microbiol, 2017, 7: 81. DOI: 10.3389/fcimb.2017.00081.
27. Radej S, Płaza P, Olender A, et al. Infiltrating Treg and Th17 cells of the prostate hypertrophy gland associated with propionibacterium acnes infection[J]. Res Rep Urol, 2020, 12: 593-597. DOI: 10.2147/rru.S284066.
28. Yin S, Xu D, Zhang M, et al. Urine flora imbalance and new biomarkers in prostate cancer and benign prostatic hyperplasia[J]. Archives of Medical Science, 2021. DOI: 10.5114/AOMS/135380.
29. Roper WG. The prevention of benign prostatic hyperplasia (bph)[J]. Med Hypotheses, 2017, 100: 4-9. DOI: 10.1016/j.mehy.2016.12.013.
30. Dong W, Zheng J, Huang Y, et al. Sodium butyrate treatment and fecal microbiota transplantation provide relief from ulcerative colitis-induced prostate enlargement[J]. Front Cell Infect Microbiol, 2022, 12: 1037279. DOI: 10.3389/fcimb.2022.1037279.
31. Amory JK, Bremner WJ. Regulation of testicular function in men: implications for male hormonal contraceptive development[J]. J Steroid Biochem Mol Biol, 2003, 85(2-5): 357-361. DOI: 10.1016/s0960-0760(03)00205-x.
32. Corona G, Baldi E, Maggi M. Androgen regulation of prostate cancer: where are we now?[J]. J Endocrinol Invest, 2011, 34(3): 232-243. DOI: 10.1007/bf03347072.
33. Peterson MD, Belakovskiy A, McGrath R, et al. Testosterone deficiency, weakness, and multimorbidity in men[J]. Sci Rep, 2018, 8(1): 5897. DOI: 10.1038/s41598-018-24347-6.
34. GBD 2019 Benign Prostatic Hyperplasia Collaborators. The global, regional, and national burden of benign prostatic hyperplasia in 204 countries and territories from 2000 to 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Healthy Longev, 2022, 3(11): e754-e776. DOI: 10.1016/s2666-7568(22)00213-6.
35. Behre HM, Bohmeyer J, Nieschlag E. Prostate volume in testosterone-treated and untreated hypogonadal men in comparison to age-matched normal controls[J]. Clin Endocrinol (Oxf), 1994, 40(3): 341-349. DOI: 10.1111/j.1365-2265.1994.tb03929.x.
36. Rohrmann S, Nelson WG, Rifai N, et al. Serum sex steroid hormones and lower urinary tract symptoms in third national health and nutrition examination survey (NHANES III)[J]. Urology, 2007, 69(4): 708-713. DOI: 10.1016/j.urology.2007.01.011.
37. Roberts RO, Jacobson DJ, Rhodes T, et al. Serum sex hormones and measures of benign prostatic hyperplasia[J]. Prostate, 2004, 61(2): 124-131. DOI: 10.1002/pros.20080.
38. 谢金波, 彭波. 良性前列腺增生的流行病学特征及危险因素研究进展[J]. 同济大学学报(医学版), 2021, 42(4): 568-573. [Xie JB, Peng B. Epidemiological characteristics and risk factors of benign prostatic hyperplasia: an update[J]. Journal of Tongji University(Medical Science), 2021, 42(4): 568-573.] DOI: 10.12289/j.issn.1008-0392.20187.
39. Shin JH, Park YH, Sim M, et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome[J]. Res Microbiol, 2019, 170(4-5): 192-201. DOI: 10.1016/j.resmic.2019.03.003.
40. Pernigoni N, Zagato E, Calcinotto A, et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis[J]. Science, 2021, 374(6564): 216-224. DOI: 10.1126/science.abf8403.
41. Matsushita M, Fujita K, Motooka D, et al. Firmicutes in gut microbiota correlate with blood testosterone levels in elderly men[J]. World Journal of Mens Health, 2022, 40(3): 517-525. DOI: 10.5534/wjmh.210190.
42. Li D, Liu R, Wang M, et al. 3β-Hydroxysteroid dehydrogenase expressed by gut microbes degrades testosterone and is linked to depression in males[J]. Cell Host Microbe, 2022, 30(3): 329-339. e5. DOI: 10.1016/j.chom.2022.01.001.
43. Liu J, Liu L, Zhang G, et al. Poria cocos polysaccharides attenuate chronic nonbacterial prostatitis by targeting the gut microbiota: comparative study of Poria cocos polysaccharides and finasteride in treating chronic prostatitis[J]. Int J Biol Macromol, 2021, 189: 346-355. DOI: 10.1016/j.ijbiomac.2021.08.139.
44. An J, Song Y, Kim S, et al. Alteration of gut microbes in benign prostatic hyperplasia model and finasteride treatment model[J]. Int J Mol Sci, 2023, 24(6): 5904. DOI: 10.3390/ijms24065904.
45. Choi YJ, Fan M, Tang Y, et al. Heat-killed and live enterococcus faecalis attenuates enlarged prostate in an animal model of benign prostatic hyperplasia[J]. J Microbiol Biotechnol, 2021, 31(8): 1134-1143. DOI: 10.4014/jmb.2102.02032.
46. Wang CT, Wang YY, Liu WS, et al. Rhodobacter sphaeroides extract lycogen™ attenuates testosterone-induced benign prostate hyperplasia in rats[J]. Int J Mol Sci, 2018, 19(4): 1137. DOI: 10.3390/ijms19041137.
47. Lerner LB, McVary KT, Barry MJ, et al. Management of lower urinary tract symptoms attributed to benign prostatic hyperplasia: AUA guideline part I-initial work-up and medical management[J]. J Urol, 2021, 206(4): 806-817. DOI: 10.1097/ju.0000000000002183.
48. Loeb S, Kettermann A, Carter HB, et al. Prostate volume changes over time: results from the baltimore longitudinal study of aging[J]. J Urol, 2009, 182(4): 1458-1462. DOI: 10.1016/j.juro.2009.06.047.
49. Ghosh TS, Shanahan F, O'Toole PW. The gut microbiome as a modulator of healthy ageing[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(9): 565-584. DOI: 10.1038/s41575-022-00605-x.
50. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature, 2012, 488(7410): 178-184. DOI: 10.1038/nature11319.
51. Cullender TC, Chassaing B, Janzon A, et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut[J]. Cell Host Microbe, 2013, 14(5): 571-581. DOI: 10.1016/j.chom.2013.10.009.
52. Zwielehner J, Liszt K, Handschur M, et al. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of bacteroides, bifidobacteria and clostridium cluster iv in institutionalized elderly[J]. Exp Gerontol, 2009, 44(6-7): 440-446. DOI: 10.1016/j.exger.2009.04.002.
53. van Tongeren SP, Slaets JP, Harmsen HJ, et al. Fecal microbiota composition and frailty[J]. Appl Environ Microbiol, 2005, 71(10): 6438-6442. DOI: 10.1128/aem.71.10.6438-6442.2005.
54. Hor YY, Lew LC, Jaafar MH, et al. Lactobacillus sp. improved microbiota and metabolite profiles of aging rats[J]. Pharmacol Res, 2019, 146: 104312. DOI: 10.1016/j.phrs.2019.104312.
55. Zhang X, Yang Y, Su J, et al. Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats[J]. Geroscience, 2021, 43(2): 709-725. DOI: 10.1007/s11357-020-00188-y.
56. Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease?[J]. Eur Urol, 2007, 51(5): 1202-1216. DOI: 10.1016/j.eururo.2006.12.011.
57. Nickel JC, Roehrborn CG, O'Leary MP, et al. The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial[J]. Eur Urol, 2008, 54(6): 1379-1384. DOI: 10.1016/j.eururo.2007.11.026.
58. Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity[J]. Cell, 2016, 167(4): 1125-1136. e8. DOI: 10.1016/j.cell.2016.10.020.
59. Chen Y, Guo KM, Nagy T, et al. Chronic oral exposure to glycated whey proteins increases survival of aged male NOD mice with autoimmune prostatitis by regulating the gut microbiome and anti-inflammatory responses[J]. Food Funct, 2020, 11(1): 153-162. DOI:10.1039/c9fo01740b.
60. Yu SH, Jung SI. The potential role of urinary microbiome in benign prostate hyperplasia/lower urinary tract symptoms[J]. Diagnostics (Basel), 2022, 12(8): DOI: 10.3390/diagnostics12081862.
61. Russo GI, Bongiorno D, Bonomo C, et al. The relationship between the gut microbiota, benign prostatic hyperplasia, and erectile dysfunction[J]. Int J Impot Res, 2023, 35(4): 350-355. DOI: 10.1038/s41443-022-00569-1.
62. Cohen RJ, Shannon BA, McNeal JE, et al. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution?[J]. J Urol, 2005, 173(6): 1969-1974. DOI: 10.1097/01.ju.0000158161.15277.78.
63. Steiner GE, Newman ME, Paikl D, et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate[J]. Prostate, 2003, 56(3): 171-182. DOI: 10.1002/pros.10238.
64. Drott JB, Alexeyev O, Bergström P, et al. Propionibacterium acnes infection induces upregulation of inflammatory genes and cytokine secretion in prostate epithelial cells[J]. BMC Microbiol, 2010, 10: 126. DOI: 10.1186/1471-2180-10-126.
65. Johnstone J, Lusty A, Tohidi M, et al. The association of new-onset diabetes mellitus and medical therapy for benign prostatic hyperplasia: a population-based study[J]. Can Urol Assoc J, 2021, 15(8): 240-246. DOI: 10.5489/cuaj.7489.
66. Xia BW, Zhao SC, Chen ZP, et al. The underlying mechanism of metabolic syndrome on benign prostatic hyperplasia and prostate volume[J]. Prostate, 2020, 80(6): 481-490. DOI: 10.1002/pros.23962.
67. Zou C, Gong D, Fang N, et al. Meta-analysis of metabolic syndrome and benign prostatic hyperplasia in Chinese patients[J]. World J Urol, 2016, 34(2): 281-289. DOI: 10.1007/s00345-015-1626-0.
68. Ratajczak W, Laszczyńska M, Rył A, et al. Tissue immunoexpression of IL-6 and IL-18 in aging men with BPH and MetS and their relationship with lipid parameters and gut microbiota-derived short chain fatty acids[J]. Aging (Albany NY), 2023, 15(20): 10875-10896. DOI: 10.18632/aging.205091.
69. Zeng SL, Li SZ, Xiao PT, et al. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism[J]. Sci Adv, 2020, 6(1): eaax6208. DOI: 10.1126/sciadv.aax6208.
70. Aho VTE, Houser MC, Pereira PAB, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson's disease[J]. Mol Neurodegener, 2021, 16(1): 6. DOI: 10.1186/s13024-021-00427-6.
71. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. DOI: 10.1080/19490976.2015.1134082.
72. Ratajczak W, Mizerski A, Rył A, et al. Alterations in fecal short chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) in men with benign prostatic hyperplasia (BPH) and metabolic syndrome (MetS)[J]. Aging (Albany NY), 2021, 13(8): 10934-10954. DOI: 10.18632/aging.202968.
73. Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota[J]. ISME J, 2014, 8(6): 1323-1335. DOI: 10.1038/ismej.2014.14.
74. Wang X, Wang Y, Gratzke C, et al. Ghrelin aggravates prostate enlargement in rats with testosterone-induced benign prostatic hyperplasia, stromal cell proliferation, and smooth muscle contraction in human prostate tissues[J]. Oxid Med Cell Longev, 2019, 2019: 4748312. DOI: 10.1155/2019/4748312.
75. Gu M, Liu C, Yang T, et al. High-fat diet induced gut microbiota alterations associating with ghrelin/Jak2/Stat3 up-regulation to promote benign prostatic hyperplasia development[J]. Front Cell Dev Biol, 2021, 9: 615928. DOI: 10.3389/fcell.2021.615928.
76. Mantzoros CS, Tzonou A, Signorello LB, et al. Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia[J]. Br J Cancer, 1997, 76(9): 1115-1158. DOI: 10.1038/bjc.1997.520.
77. Chokkalingam AP, Gao YT, Deng J, et al. Insulin-like growth factors and risk of benign prostatic hyperplasia[J]. Prostate, 2002, 52(2): 98-105. DOI: 10.1002/pros.10096.
78. Ali SH, Sami A, Safaa, et al. The role of insulin like growth factor-1(IGF-1) in developing prostate disorder in type 2 diabetic patients[J]. 2014. https://xueshu.baidu.com/usercenter/paper/show?paperid=942f715d400d091e79663254e310e184&site=xueshu_se.
79. Matsushita M, Fujita K, Hayashi T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling[J]. Cancer Res, 2021, 81(15): 4014-4026. DOI: 10.1158/0008-5472.Can-20-4090.
80. Isard O, Knol AC, Ariès MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation[J]. J Invest Dermatol, 2011, 131(1): 59-66. DOI: 10.1038/jid.2010.281.
81. Valadez-Bustos N, Escamilla-Silva EM, García-Vázquez FJ, et al. Oral administration of microencapsulated b. longum BAA-999 and lycopene modulates IGF-1/IGF-1R/IGFBP3 protein expressions in a colorectal murine model[J]. Int J Mol Sci, 2019, 20(17):4275. DOI: 10.3390/ijms20174275.
82. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity[J]. Gastroenterology, 2009, 137(5): 1716-1724. e242. DOI: 10.1053/j.gastro.2009.08.042.
83. Zhang C, Zhang M, Pang X, et al. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations[J]. ISME J, 2012, 6(10): 1848-1857. DOI: 10.1038/ismej.2012.27.
84. Matsushita M, Fujita K, Hatano K, et al. High-fat diet promotes prostate cancer growth through histamine signaling[J]. Int J Cancer, 2022, 151(4): 623-636. DOI: 10.1002/ijc.34028.
85. Griffiths EA, Duffy LC, Schanbacher FL, et al. In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice[J]. Dig Dis Sci, 2004, 49(4): 579-589. DOI: 10.1023/b:ddas.0000026302.92898.ae.
86. 叶凡, 李琢, 黄兴, 等. 益生菌辅助化疗对晚期大肠癌患者的临床疗效和安全性评价[J]. 中国药师, 2024, 27(2): 295-301. [Ye F, Li Z, Huang X, et al. Clinical efficacy and safety evaluation of probiotic-assisted chemotherapy in patients with advanced colorectal cancer[J]. China Pharmacist, 2024, 27(2): 295-301] DOI: 10.12173/j.issn.1008-049X.202401114.
87. 龚财芳, 熊永福, 赵俊宇, 等. 口服益生菌在肝切除患者中应用效果的Meta分析[J]. 药物流行病学杂志, 2024, 33(3): 319-329. [Gong CF, Xiong YF, Zhao JY, et al. Effectiveness of oral probiotics for hepatectomised patients: a Meta-analysis[J]. Chinese Journal of Pharmacoepidemiology, 2024, 33(3): 319-329.] DOI: 10.12173/j.issn.1005-0698.202309011.
88. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity (Silver Spring), 2010, 18(1): 190-195. DOI: 10.1038/oby.2009.167.
89. Vignozzi L, Morelli A, Sarchielli E, et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit[J].J Endocrinol, 2012, 212(1): 74-84. DOI: 10.1530/JOE-11-0289.
90. Li Y, Shi B, Dong F, et al. Effects of inflammatory responses, apoptosis, and STAT3/NF-κB- and Nrf2-mediated oxidative stress on benign prostatic hyperplasia induced by a high-fat diet[J]. Aging (Albany NY), 2019, 11(15): 5570-5578. DOI: 10.18632/aging.102138.
91. Piwowarski JP, Stanisławska I, Granica S. Dietary polyphenol and microbiota interactions in the context of prostate health[J]. Ann N Y Acad Sci, 2022, 1508(1): 54-77. DOI: 10.1111/nyas.14701.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20243014
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20242504
-
An analysis of disease burden and risk factors of chronic kidney disease in China from 1990 to 2021
Sep. 30, 20242406
-
Construction and clinical teaching application of virtual patient system: based on artificial intelligence LLM technology
Jul. 30, 20241862
-
Characteristics of lower limb surface electromyography in patients with knee osteoarthritis and progress in their exercise rehabilitation
Aug. 31, 20241859
-
Analysis of the disease burden of neonatal encephalopathy due to birth asphyxia and trauma in China from 1990 to 2019
Aug. 31, 20241741
-
Research progress on the role and treatment of CD24 in the tumor microenvironment
Aug. 31, 20241667
-
Risk factors and prediction model construction for malnutrition in long-term bedridden elderly patients
Aug. 31, 20241637