Welcome to visit Zhongnan Medical Journal Press Series journal website!

Protein phosphatases in pathological cardiac hypertrophy

Published on Apr. 29, 2024Total Views: 261 timesTotal Downloads: 444 timesDownloadMobile

Author: ZHANG Xutao 1, 2, 3 XIA Hao 1, 2, 3

Affiliation: 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China 2. Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China 3. Hubei Key Laboratory of Cardiology, Wuhan 430060, China

Keywords: Pathological cardiac hypertrophy Protein phosphatases Dephosphorylation HDACs NFATs

DOI: 10.12173/j.issn.1004-5511.202402028

Reference: Zhang XT, Xia H. Protein phosphatases in pathological cardiac hypertrophy[J]. Yixue Xinzhi Zazhi, 2024, 34(4): 458-465. DOI:10.12173/j.issn.1004-5511.202402028.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Pathological cardiac hypertrophy is a pathological change of various cardiovascular disease, caused by persistent mechanical and chemical stimulation, which ultimately leads to heart failure and arrhythmia. The clinical therapeutic means of prevention cannot be satisfied by the prevention and treatment strategies currently. Therefore, it is crucial to clarify the regulatory mechanisms of pathological cardiac hypertrophy and developing effective therapeutic targets in slowing down the growth of pathological cardiac hypertrophy. In recent years, there has been increasing evidence that protein phosphatases play an important role in mediating dephosphorylation in pathological cardiac hypertrophy. Numerous animal studies have demonstrated that pathological cardiac hypertrophy of mice can be efficiently treated by directly regulating protein phosphatases or protein phosphatase substrates. This review elaborated the role that protein phosphatases play in the pathological cardiac hypertrophy process and highlighted the potential advantages of regulating protein phosphatases and its substrates in the clinical prevention and treatment of pathological cardiac hypertrophy.

Full-text
Please download the PDF version to read the full text: download
References

1.Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy[J]. Nat Rev Cardiol, 2018, 15(7): 387-407. DOI: 10.1038/s41569-018-0007-y.

2.Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association[J]. Circulation, 2023, 147(8): e93-e621. DOI: 10.1161/cir.0000000000001123.

3.GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024: S0140-6736(24)00367-2. DOI: 10.1016/s0140-6736(24)00367-2.

4.Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: a report of US and global data from the American Heart Association[J]. Circulation, 2024, 149(8): e347-e913. DOI: 10.1161/cir.0000000000001209.

5.Kamel R, Leroy J, Vandecasteele G, et al. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure[J]. Nat Rev Cardiol, 2023, 20(2): 90-108. DOI: 10.1038/s41569-022-00756-z.

6.Cornwell JD, McDermott JC. MEF2 in cardiac hypertrophy in response to hypertension[J]. Trends Cardiovasc Med, 2023, 33(4): 204-212. DOI: 10.1016/j.tcm.2022.01.002.

7.Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential[J]. Nat Rev Cardiol, 2023, 20(5): 347-363. DOI: 10.1038/s41569-022-00806-6.

8.Vaduganathan M, Claggett BL, Jhund PS, et al. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: a comparative analysis of three randomised controlled trials[J]. Lancet, 2020, 396(10244): 121-128. DOI: 10.1016/s0140- 6736(20)30748-0.

9.Ali MU, Mancini GBJ, Fitzpatrick-Lewis D, et al. The effectiveness of sodium-glucose co-transporter 2 inhibitors on cardiorenal outcomes: an updated systematic review and Meta-analysis[J]. Cardiovasc Diabetol, 2024, 23(1): 72. DOI: 10.1186/s12933-024-02154-w.

10.Polovina M, Tschöpe C, Rosano G, et al. Incidence, risk assessment and prevention of sudden cardiac death in cardiomyopathies[J]. Eur J Heart Fail, 2023, 25(12): 2144-2163. DOI: 10.1002/ejhf.3076.

11.Giamouzis G, Dimos A, Xanthopoulos A, et al. Left ventricular hypertrophy and sudden cardiac death[J]. Heart Fail Rev, 2022, 27(2): 711-724. DOI: 10.1007/s10741-021-10134-5.

12.Rohini A, Agrawal N, Koyani CN, et al. Molecular targets and regulators of cardiac hypertrophy[J]. Pharmacol Res, 2010, 61(4): 269-280. DOI: 10.1016/j.phrs.2009.11.012.

13.Wei X, Jin J, Wu J, et al. Cardiac-specific BACH1 ablation attenuates pathological cardiac hypertrophy by inhibiting the Ang II type 1 receptor expression and the Ca2+/CaMKII pathway[J]. Cardiovasc Res, 2023, 119(9): 1842-1855. DOI: 10.1093/cvr/cvad086.

14.郭俊玲, 吴曼, 李颖, 等. 基于MAPK/ERK信号通路探究延胡索乙素对心肌梗死后心力衰竭大鼠的心肌保护作用[J]. 中国药师, 2022, 25(5): 765-771. [Guo JL, Wu M, Li Y, et al. Exploration of the myocardial protective effects of tetrahydropalmatine in rats with heart failure after myocardial infarction based on MAPK/ERK signal pathway[J]. China Pharmacist, 2022, 25(5): 765-771.] DOI: 10.19962/j.cnki.issn1008-049X.2022.05.003.

15.Bai Y, Zhang X, Li Y, et al. Protein kinase A is a master regulator of physiological and pathological cardiac hypertrophy[J]. Circulation Research, 2024, 134(4): 393-410. DOI: 10.1161/circresaha.123.322729.

16.Lin X, Zhang H, Chu Y, et al. Honokiol ameliorates angiotensin II-induced cardiac hypertrophy by promoting dissociation of the Nur77-LKB1 complex and activating the AMPK pathway[J]. J Cell Mol Med, 2024, 28(1): e18028. DOI: 10.1111/jcmm.18028.

17.Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets[J]. Arch Toxicol, 2015, 89(9): 1401-1438. DOI: 10.1007/s00204-015-1477-x.

18.Yan K, Wang K, Li P. The role of post-translational modifications in cardiac hypertrophy[J]. J Cell Mol Med, 2019, 23(6): 3795-3807. DOI: 10.1111/jcmm.14330.

19.Yan K, Ponnusamy M, Xin Y, et al. The role of K63-linked polyubiquitination in cardiac hypertrophy[J]. J Cell Mol Med, 2018, 22(10): 4558-4567. DOI: 10.1111/jcmm.13669.

20.Zhu L, Zhou Q, He L, et al. Mitochondrial unfolded protein response: an emerging pathway in human diseases[J]. Free Radic Biol Med, 2021, 163: 125-134. DOI: 10.1016/j.freeradbiomed.2020.12.013.

21.Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart[J]. Eur J Heart Fail, 2023, 25(8): 1199-1212. DOI: 10.1002/ejhf.2972.

22.Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox[J]. Chem Soc Rev, 2022, 51(13): 5691-5730. DOI: 10.1039/d1cs00991e.

23.Burnett G, Kennedy EP. The enzymatic phosphorylation of proteins[J]. J Biol Chem, 1954, 211(2): 969-980. https://pubmed.ncbi.nlm.nih.gov/13221602/.

24.Fischer EH, Krebs EG. Conversion of phosphorylase b to phosphorylase a in muscle extracts[J]. J Biol Chem, 1955, 216(1): 121-132. https://pubmed.ncbi.nlm.nih.gov/13252012/.

25.Lubbers ER, Mohler PJ. Roles and regulation of protein phosphatase 2A (PP2A) in the heart[J]. J Mol Cell Cardiol, 2016, 101: 127-133. DOI: 10.1016/j.yjmcc.2016.11.003.

26.Weber S, Meyer-Roxlau S, Wagner M, et al. Counteracting protein kinase activity in the heart: the multiple roles of protein phosphatases[J]. Front Pharmacol, 2015, 6: 270. DOI: 10.3389/fphar.2015.00270.

27.Chaklader M, Rothermel BA. Calcineurin in the heart: new horizons for an old friend[J]. Cell Signal, 2021, 87: 110134. DOI: 10.1016/j.cellsig.2021.110134.

28.Herting JR, König JH, Hadova K, et al. Hypercontractile cardiac phenotype in mice overexpressing the regulatory subunit PR72 of protein phosphatase 2A[J]. Front Cardiovasc Med, 2023, 10: 1239555. DOI: 10.3389/fcvm.2023.1239555.

29.Williams RB, Johnson CN. A review of calcineurin biophysics with implications for cardiac physiology[J]. Int J Mol Sci, 2021, 22(21): 11565. DOI: 10.3390/ijms222111565.

30.McCright B, Rivers AM, Audlin S, et al. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm[J]. J Biol Chem, 1996, 271(36): 22081-22089. DOI: 10.1074/jbc.271.36.22081.

31.Weeks KL, Ranieri A, Karaś A, et al. β-adrenergic stimulation induces histone deacetylase 5 (HDAC5) nuclear accumulation in cardiomyocytes by B55α-PP2A-mediated dephosphorylation[J]. J Am Heart Assoc, 2017, 6(4): e004861. DOI: 10.1161/jaha.116.004861.

32.Bokník P, Fockenbrock M, Herzig S, et al. Protein phosphatase activity is increased in a rat model of long-term beta-adrenergic stimulation[J]. Naunyn Schmiedebergs Arch Pharmacol, 2000, 362(3): 222-231. DOI: 10.1007/s002100000283.

33.Yin X, Cuello F, Mayr U, et al. Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution[J]. Mol Cell Proteomics, 2010, 9(3): 497-509. DOI: 10.1074/mcp.M900275-MCP200.

34.Puhl SL, Weeks KL, Güran A, et al. Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo[J]. Cardiovasc Res, 2019, 115(3): 519-529. DOI: 10.1093/cvr/cvy230.

35.Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy[J]. J Mol Cell Cardiol, 2016, 97: 245-262. DOI: 10.1016/j.yjmcc.2016.06.001.

36.Taigen T, De Windt LJ, Lim HW, et al. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy[J]. Proc Natl Acad Sci USA, 2000, 97(3): 1196-1201. DOI: 10.1073/pnas.97.3.1196.

37.Alcendor RR, Kirshenbaum LA, Imai S, et al. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes[J]. Circ Res, 2004, 95(10): 971-980. DOI: 10.1161/01. RES.0000147557.75257.ff.

38.Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease[J]. Am J Physiol Heart Circ Physiol, 2015, 309(9): H1375-1389. DOI: 10.1152/ajpheart.00053.2015.

39.Ling S, Sun Q, Li Y, et al. CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A[J]. Circulation, 2012, 126(25): 3028-3040. DOI: 10.1161/circulationaha.112.102780.

40.Sucharov CC, Langer S, Bristow M, et al. Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A[J]. Am J Physiol Cell Physiol, 2006, 291(5): C1029-1037. DOI: 10.1152/ajpcell.00059.2006.

41.Yoon S, Kook T, Min HK, et al. PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart[J]. Exp Mol Med, 2018, 50(7): 1-14. DOI: 10.1038/s12276-018-0121-2.

42.Yoon S, Kim M, Min HK, et al. Inhibition of heat shock protein 70 blocks the development of cardiac hypertrophy by modulating the phosphorylation of histone deacetylase 2[J]. Cardiovasc Res, 2019, 115(13): 1850-1860. DOI: 10.1093/cvr/cvy317.

43.Gergs U, Boknik P, Buchwalow I, et al. Overexpression of the catalytic subunit of protein phosphatase 2A impairs cardiac function[J]. J Biol Chem 2004, 279(39): 40827-40834. DOI: 10.1074/jbc.M405770200.

44.Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer[J]. Curr Mol Med, 2013, 13(4): 543-554. DOI: 10.2174/1566524011313040007.

45.Rinne A, Blatter LA. A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells[J]. J Physiol, 2010, 588(Pt 17): 3211-3216. DOI: 10.1113/jphysiol.2010.192419.

46.Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy[J]. Cell, 1998, 93(2): 215-228. DOI: 10.1016/s0092-8674(00)81573-1.

47.Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways[J]. Nat Rev Mol Cell Biol, 2006, 7(8): 589-600. DOI: 10.1038/nrm1983.

48.Heineke J, Ritter O. Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond[J]. J Mol Cell Cardiol, 2012, 52(1): 62-73. DOI: 10.1016/j.yjmcc.2011.10.018.

49.Wu H, Rothermel B, Kanatous S, et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway[J]. Embo, 2001, 20(22): 6414-6423. DOI: 10.1093/emboj/20.22.6414.

50.Cortés R, Rivera M, Roselló-Lletí E, et al. Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology[J]. PLoS One, 2012, 7(2): e30915. DOI: 10.1371/journal.pone.0030915.

51.Zheng J, Tian J, Wang S, et al. Stachydrine hydrochloride suppresses phenylephrine-induced pathological cardiac hypertrophy by inhibiting the calcineurin/nuclear factor of activated T-cell signalling pathway[J]. Eur J Pharmacol, 2020, 883: 173386. DOI: 10.1016/j.ejphar.2020.173386.

52.Felkin LE, Narita T, Germack R, et al. Calcineurin splicing variant calcineurin Aβ1 improves cardiac function after myocardial infarction without inducing hypertrophy[J]. Circulation, 2011, 123(24): 2838-2847. DOI: 10.1161/circulationaha.110.012211.

53.Honkanen RE. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A[J]. FEBS Lett, 1993, 330(3): 283-286. DOI: 10.1016/0014-5793(93)80889-3.

54.Oaks JJ, Santhanam R, Walker CJ, et al. Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies[J]. Blood, 2013, 122(11): 1923-1934. DOI: 10.1182/blood-2013-03-492181.

55.Liu W, Zi M, Tsui H, et al. A novel immunomodulator, FTY-720 reverses existing cardiac hypertrophy and fibrosis from pressure overload by targeting NFAT (nuclear factor of activated T-cells) signaling and periostin[J]. Circ Heart Fail, 2013, 6(4): 833-844. DOI: 10.1161/circheartfailure.112.000123.

56.Egom EE, Ke Y, Musa H, et al. FTY720 prevents ischemia/reperfusion injury-associated arrhythmias in an ex vivo rat heart model via activation of Pak1/Akt signaling[J]. J Mol Cell Cardiol, 2010, 48(2): 406-414. DOI: 10.1016/j.yjmcc.2009.10.009.

57.Calderón-Sánchez E, Rodriguez-Moyano M, Smani T. Immunophilins and cardiovascular complications[J]. Curr Med Chem, 2011, 18(35): 5408-5413. DOI:  10.2174/092986711798194379.

58.Sussman MA, Lim HW, Gude N, et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition[J]. Science, 1998, 281(5383): 1690-1693. DOI: 10.1126/science.281.5383.1690.

59.Lu ML, Wang J, Sun Y, et al. Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway[J]. J Ginseng Res 2021, 45(6): 683-694. DOI: 10.1016/j.jgr.2021.03.006.