Welcome to visit Zhongnan Medical Journal Press Series journal website!

Approaches to the mining of traditional Chinese medical experts' case histories using machine learning techniques

Published on Apr. 29, 2024Total Views: 1589 timesTotal Downloads: 814 timesDownloadMobile

Author: XIA Xin 1 MU Wei 2 LI Yanfen 2 HUANG Yuhong 2

Affiliation: 1. Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 2. Department of Clinical Pharmacology, the Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, China

DOI: 10.12173/j.issn.1004-5511.202312129

Reference: Xia X, Mu W, Li YF, Huang HY. Approaches to the mining of traditional Chinese medical experts' case histories using machine learning techniques[J]. Yixue Xinzhi Zazhi, 2024, 34(4): 448-457. DOI: 10.12173/j.issn.1004-5511.202312129.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

As a model for solving clinical challenges, renowned medical cases have affirmed the correctness of diagnostic and treatment approaches as well as the effectiveness of practical outcomes through long-term clinical practice. However, traditional statistical methods struggle to comprehensively and deeply unveil the speculative sys-tem and empirical logic of traditional Chinese medicine (TCM), especially when confronted with its nonlinear, multi-dimensional, and complex relationships. In contrast, machine learning methods demonstrate significant advantages in addressing such issues and have been widely applied in the study and inheritance of TCM. This article aims to discuss how to use machine learning algorithms to study TCM medical cases, and to describe the acquisition and processing of TCM medical case data and the selection of machine learning algorithms, with a view to providing references for the study of TCM medical cases.

Full-text
Please download the PDF version to read the full text: download
References

1..肖圣鹏, 崔友平. 坚定中医药自信发展中医药事业[J].红 旗文稿, 2019, (16): 34-35. [Xiao SP, Cui YP. Strengthen confidence in traditional Chinese medicine and develop the cause of traditional Chinese medicine [J]. Red Flag Manuscript, 2019, (16): 34-35.] DOI: CNKI:SUN:HQWG.0. 2019-16-012.

2..代倩倩, 王燕平, 商洪才, 等. 从循证医学与转化医学谈中医药临床研究发展[J]. 生物医学转化, 2022, 3(3): 2-6. [Dai QQ, Wang YP, Shang HC, et al. Discussion on the development of traditional Chinese medicine clinical research from evidence-based medicine and translational medicine[J]. Biomedical Transfor-mation, 2022, 3(3): 2-6.] DOI: 10.12287/j.issn.2096-8965.20220301.

3..Jennings NR , Wooldridge MJ. Foundations of Machine Learning[M]. MIT Press, 2012.

4..庄铭, 安佳丽, 钟梦媛, 等. 中医药临床疗效评价方法研究进展[J]. 中国中药杂志, 2023, 48(12): 3263-3268. [Zhuang M, An JL, Zhong MY, et al. Evaluation methods of clinical efficacy of traditional Chinese medi-cine[J]. China Journal of Chinese Materia Medica, 2023, 48(12): 3263-3268.] DOI: 10.19540/j.cnki.cjcmm.20230219.502.

5..文天才, 李平. 基于XML的名老中医医案结构化标引系统[J]. 中国数字医学, 2013, 8(7): 22-24. [Wen TC, Li P, The structuring index system for famous TCM doctors medical record based on XML[J]. China Digital Medicine, 2013, 8(7): 22-24.] DOI: 10.3969/j.issn.1673-7571.2013.07.006.

6..邓宇, 张振铭, 陈橙, 等. 基于正则表达式的中医医案术语抽取方法研究[J]. 湖南中医杂志, 2023, 39(5): 202-207. [Deng Y, Zhang ZM, Chen C, et al. Research on the terminology extraction method of traditional Chi-nese medicine medical case based on regular expressions[J]. Hunan Journal of Traditional Chinese Medicine, 2023, 39(5): 202-207.] DOI: 10.16808/j.cnki.issn1003-7705.2023.05.045.

7..谢蓉, 王燕萍, 彭丹虹, 等. 中医症状规范化研究[J]. 河南中医, 2017, 37(7): 1144-1146. [Xie R, Wang YP, Peng DH, et al. The research of the standardization of TCM symptoms[J]. Henan Traditional Chinese Medicine, 2017, 37(7): 1144-1146.] DOI: 10.16367/j.issn.1003-5028.2017.07.0403.

8..吴文玲. 面向中医诊疗知识库的术语规范化研究[D].长春:吉林大学, 2021. [Wu WL. Study on the standardization of terms in tcm diagnosis and treatment knowledge base[D]. Changchun: Jilin University, 2021.] DOI: 10.27162/d.cnki.gjlin.2021.001257.

9..王桂彬, 庞博. 名老中医隐性知识发现与医案解构模式研究[J]. 中华中医药杂志, 2023, 38(5): 2230-2234. [Wang GB, Pang B. Research on the model of tacit knowledge discovery and medical case deconstruction of famous old Chinese medicine experts[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2023, 38(5): 2230-2234.] https://www.zhangqiaokeyan.com/academic-journal-cn_detail_thesis/02012107144540.html.

10..张婷婷, 王亚强, 蒋艺宁, 等. 构建中医辨证解释体系的挑战与思路[J]. 中医杂志, 2024, 65(5): 445-448, 454. [Zhang TT, Wang YQ, Jiang YN, et al. Challenges and ideas for constructing a TCM syndrome differen-tiation and interpretation system[J]. Journal of Traditional Chinese Medicine, 2024, 65(5): 445-448, 454.] DOI: 10.13288/j.11-2166/r.2024.05.001.

11..王一名, 代欣玥, 郭曼萍, 等. 中医药真实世界研究数据转化方法[J]. 中国循证医学杂志, 2023, 23(9): 1081-1088. [Wang YM, Dai XY, Guo MP, et al. Data transformation method of real world study on traditional Chi-nese medicine[J]. Chinese Journal of Evidence-Based Medicine, 2023, 23(9): 1081-1088.] DOI: 10.7507/1672-2531.202302094.

12..王志国, 李思婷. 关于中医病名、证候、症状、体征、病状、临床表现等术语规范化[J]. 中医学, 2021, 10(6): 5. [Wang ZG, Li ST. Standardization of TCM terms such as disease names, syndromes, symptoms, signs, symp-toms and clinical manifestations[J]. Traditional Chinese Medicine, 2021, 10(6): 5.] DOI: 10.12677/TCM.2021.106105.

13..仝小林, 房敏, 高慧, 等. 2021年度中医药重大科学问题和工程技术难题[J]. 中医杂志, 2021, 62(11): 921-929. [Tong XL, Fang M, Gao H, et al. Major scientific issues and engineering and technical problems of tra-ditional Chinese medicine in 2021[J]. Journal of Traditional Chinese Medicine, 2021, 62(11): 921-929.] DOI: 10.13288/j.11-2166/r.2021.11.001.

14..潘越, 侯胜田, 赵曙光, 等. 北京中医药文化传播发展报告(2015)[M]. 北京: 社会科学文献出版社, 2015. [Pan Y, Hou ST, Zhao SG, et al. Report on TCM culture communication development of Beijing (2015)[M]. Bei-jing: Social Sciences Academic Press. 2015.]

15..杨佳澄. 基于群体智能的中医辨证诊断研究[D]. 兰州:兰州交通大学, 2019. [Yang JC. Research on TCM diagnosis based on swarm intelligence[D]. Lanzhou: Lanzhou Jiaotong University, 2019.] DOI: 10.27205/d.cnki.gltec.2019.000011.

16..梁洁, 和思敏, 陈淑婷, 等. 纵向研究中控制时依混杂的G方法[J]. 中华流行病学杂志, 2021, 42(10): 5. [Liang J, He SM, Chen ST, et al. In longitudinal studies, the control method was conflated according to the G method[J].Chinese Journal of Epidemiology, 2021, 42(10): 5.] DOI: 10.3760/cma.j.cn112338-20200731-01001.

17..张佳康. 基于数据挖掘自拟消瘿汤治疗气郁痰阻型甲状腺结节的临床观察[D]. 哈尔滨:黑龙江中医药大学, 2023. [Zhang JK. Clinical observation of self-made Xiaoying decoction based on data mining in the treat-ment of thyroid nodules with qi stagnation and phlegm obstruction[D]. Harbin: Heilongjiang University of Chinese Medicine, 2023.] DOI: 10.27127/d.cnki.ghlzu.2023.000374.

18..庄逸洋, 郑升鹏, 陈文嘉, 等. 国医大师邓铁涛治疗冠心病用药规律的数据挖掘研究[J]. 时珍国医国药, 2016, 27(12): 3025-3027. [Zhuang YY, Zheng SP, Chen WJ, et al. Data mining research on the medication rules of Deng Tietao, a master of traditional Chinese medicine, in the treatment of coronary heart disease[J]. Lishizhen Medicine and Materia Medica Research, 2016, 27(12): 3025-3027.] DOI: 10.3969/j.issn.1008-0805.2016.12.071.

19..刘静, 杨建新, 王春晓, 等. 基于《伤寒论》六经辨证体系的腰椎间盘突出症中医证型规律研究[J]. 中国中医骨伤科杂志, 2023, 31(7): 12-16. [Liu J, Yang JX, Wang CX, et al. Study on the law of TCM syndromes of lumbar disc herniation based on the syndrome differentiation system of six meridians in treatise on febrile diseases[J].Chinese Journal of Traditional Medical Traumatology & Orthopedics, 2023, 31(7): 12-16.] DOI: 10.20085/j.cnki.issn1005-0205.230703.

20..李毅, 刘艳, 刘力, 等. 溃疡性结肠炎中医症状学主成分分析[J]. 中医药导报, 2016, 22(7): 32-35. [Li Y, Liu Y, Liu L, et al. TCM Symptoms of ulcerative colitis of principal component analysis[J]. Guiding Journal of Tradi-tional Chinese Medicine and Pharmacy, 2016, 22(7): 32-35.] DOI: 10.13862/j.cnki.cn43-1446/r.2016.07.010.

21..谭楠楠, 章轶立, 杜康佳, 等. 基于主成分分析的慢性心力衰竭中医症状与证候研究[J]. 中华中医药杂志, 2021, 36(7): 4265-4267. [Tan NN, Zhang YL, Du KJ, et al. Exploration of TCM symptoms and syndromes of chronic heart failure based on principal component analysis[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(7): 4265-4267.] https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjMxMjI2Eg96Z3l5eGIyMDIxMDcxMTcaCGg3bW8xdGQ2.

22..徐小港, 王钰, 徐义峰, 等. 基于数据挖掘的痛经用药规律研究[J]. 西部中医药, 2024, 37(2): 99-103. [Xu XG, Wang Y, Xu YF, et al. Study on medication rule of dysmenorrhea based on data mining[J]. Western Journal of Traditional Chinese Medicine, 2024, 37(2): 99-103.] DOI: 10.12174/j.issn.2096-9600.2024.02.19.

23..史媛媛. 基于明清时期及近现代医案分析的不寐证治规律研究[D]. 沈阳:辽宁中医药大学, 2022. [Shi YY. Based on the analysis of medical cases in the Ming and Qing dynasties and modern times, the law of insomnia syndrome treatment is studied[D]. Shengyan: Liaoning University of Traditional Chinese Medicine, 2022.] DOI: 10.27213/d.cnki.glnzc.2022.000095.

24..段一凡, 唐明坤, 孙海霞, 等. 面向疾病风险智能预测研究过程的电子病历数据质量需求模型构建[J]. 中国循证医学杂志, 2023, 23(9): 1072-1080. [Duan YF, Tang MK, Sun HX, et al.Exploring data quality for machine learning-based disease risk predictions with electronic medical records[J]. Chinese Journal of Evi-dence-Based Medicine, 2023, 23(9): 1072-1080.] DOI: 10.7507/1672-2531.202301076.

25..余学杰, 李书珍, 李晓燕, 等. 基于决策树提取中医专家辨证规律初探[J]. 辽宁中医杂志, 2015, 42(1): 19-24. [Yu XJ, Li SZ, Li XY, et al. Study on extracting Chinese medicine experts' diagnostic rules by decision tree[J].Liaoning Journal of Traditional Chinese Medicine,2015, 42(1): 19-24.] DOI: 10.13192/j.issn.1000-1719.2015.01.006.

26..刘广, 孙艳秋, 裴媛. 基于C4.5决策树算法的中医胃炎实验数据分类挖掘研究[J]. 中华中医药学刊, 2016, 34(12): 2958-2961. [Liu G, Sun YQ, Pei Y, et al. Classified mining of TCM gastritis based on C4.5 decision tree algorithm[J]. Study Journal of Traditional Chinese Medicine, 2016, 34(12): 2958-2961.] DOI: 10.13193/j.issn.1673-7717.2016.12.039.

27..黄嘉韵, 郭宏, 邝艳萍. 基于决策树算法的鼻鼽辨证规律初步研究[J]. 中华中医药杂志, 2016, 31(11): 4770-4773. [Huang JY, Guo H, Kuang YP. Preliminary research on regularity of syndrome differentiation of allergic rhinitis based on decision tree algorithm[J]. China Journal of Traditional Chinese Medicine and Phar-macy, 2016, 31(11): 4770-4773.] DOI: CNKI:SUN:BXYY.0.2016-11-114.

28..苏翀, 任曈, 王国品, 等. 利用决策树建立慢性阻塞性肺病中医诊断模型[J]. 计算机工程与应用, 2019, 55(3): 225-230. [Su C, Ren T, Wang GP, et al. Using K-L divergence based decision tree to build traditional Chinese medicine diagnosis model on COPD[J]. Computer Engineering and Applications, 2019, 55(3): 225-230.] DOI: 10.3778/j.issn.1002-8331.1710-0089.

29..宫文浩, 兰天莹, 杨燕, 等. 基于随机森林和偏相关分析的小儿肺炎痰热闭肺证中医证候诊断模型研究[J]. 中华中医药杂志, 2023, 38(9): 4497-4501. [Gong WH, Lan TY, Yang Y, et al. Research on traditional Chinese medicine syndrome diagnosis model of pediatric pneumonia with accumulation of phlegm-heat syndrome based on random forest and partial correlation anal-ysis[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2023, 38(9): 4497-4501.] https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202309096.htm.

30..姜超, 冯哲, 王均琴, 等. 三种机器学习方法在脑出血中医辨证分类中应用的比较研究[J]. 中国卫生统计, 2023, 40(6): 921-924, 928. [Jiang C, Feng Z, Wang JQ, et al. A comparative study on the application of three machine learning methods in TCM syn-drome differentiation and classification of intracerebral hemorrhage[J]. Chinese Journal of Health Statistics, 2023, 40(6): 921-924, 928.] DOI: 10.11783/j.issn. 102-3674.2023.06.028.

31..朱文锋, 朱咏华, 黄碧群. 采用贝叶斯网络运算进行中医辨证的探讨[J]. 广州中医药大学学报, 2006, 23(6): 4. [Zhu WF, Zhu YH, Huang BQ. Bayesian network computing was used to discuss syndrome differentiation in TCM[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2006, 23(6):4.] DOI: 10.3969/j.issn.1007-3213.2006.06.001.

32..刘鑫子, 李自艳, 郑思思, 等. 基于聚类分析及贝叶斯网络的双相情感障碍抑郁发作中医证候的横断面研究[J]. 中医杂志, 2024, 65(1): 79-85. [Liu XZ, Li ZY, Zheng SS, et al. A cross-sectional study of TCM patterns of de-pressive episodes in bipolar disorder based on cluster analysis and Bayesian network[J]. Journal of Traditional Chinese Medicine, 2024, 65(1): 79-85.] DOI: 10.13288/j.11-2166/r.2024.01.015.

33..甘小金, 陈艳, 马秀丽. 基于贝叶斯网络的王子瑜教授治疗子宫内膜异位症的辨证规律研究[J]. 世界中西医结合杂志, 2019, 14(10): 3. [Gan XJ, Chen Y, Ma XL. Study on professor Wang Ziyu's TCM syndromes in the treat-ment of endometriosis based on Bayesian networks[J]. World Journal of Integrated Traditional and Western Medicine, 2019, 14(10): 3.] DOI: CNKI:SUN:SJZX.0.2019-10-006.

34..任冷, 周维民. 针对非平衡多分类问题SVM算法的优化研究与应用[J]. 电脑知识与技术, 2016, 12(5): 218-220. [Ren L, Zhou WM. Optimization research and application of SVM algorithm for unbalanced mul-ti-classification problem[J]. Computer Knowledge and Technology, 2016, 12(5): 218-220.] DOI: 10.14004/j.cnki.ckt.2016.0618.

35..许明东, 马晓聪, 温宗良, 等. 支持向量机在高血压病中医证候诊断中的应用[J]. 中华中医药杂志, 2017, 32(6): 2497-2500. [Xu MD, Ma XQ, Wen ZL, et al. Application of support vector machine in the diagnosis of hypertension in TCM syndrome[J].China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32(6): 2497-2500.] DOI: CNKI:SUN:BXYY.0.2017-06-044.

36..顾天宇, 严壮志, 蒋皆恢. 基于支持向量机的中风病中医证候分类[J]. 中医药信息, 2021, 38(9): 1-3. [Gu TY, Yan ZZ, Jiang JH. Classification of TCM syndrome patterns of stroke based on SVM[J]. Information on Tra-ditional Chinese Medicine, 2021,38(9): 1-3.] DOI: 10.19656/j.cnki.1002-2406.20210901.

37..王伟杰, 唐晓颇, 王新昌, 等. 基于临床辨证的类风湿关节炎常见中医证候Logistic回归分析[J]. 中华中医药杂志, 2019, 34(2): 807-810. [Wang WJ, Tang XP, Wang XC, et al. Logistic regression analysis on TCM syn-dromes of rheumatoid arthritis based on syndrome differentiation[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(2): 807-810.] DOI: CNKI:SUN:BXYY.0.2019-02-100.

38..仲芳. 基于量效分析的《吴鞠通医案》数据挖掘研究[D]. 上海:上海中医药大学, 2020. [Zhong F, Data mining research on the case of Wu Jutong based on quantum-effect analysis[D]. Shanghai: Shanghai Universi-ty of Traditional Chinese Medicine, 2020.] DOI: 10.27320/d.cnki.gszyu.2020.000551.

39..孟光磊, 丛泽林, 宋彬, 等. 贝叶斯网络结构学习综述[J/OL]. 北京航空航天大学学报, 1-24 [2024-03-05]. [Meng GL, Cong ZL, Song B, et al. Review of Bayesian network structure learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-24 [2024-03-05].] https://doi.org/10.13700/j.bh.1001-5965.2023.0445.

40..Brown TB, Mann B, Ryder N, et al. Language models are few-shot learners[J]. 2020. DOI: 10.48550/arXiv.2005.14165.

41..Ji Z, Lee N, Frieske R, et al. Survey of hallucination in natural language generation[J]. 2022. DOI: 10.48550/arXiv.2202.03629.

42..尹玉洁, 常丽萍, 朱垚, 等. 基于脉络学说指导和医案数据挖掘的心血管事件链证治规律分析[J]. 中国实验方剂学杂志, 2022, 28(18): 144-151. [Yin YJ, Chang LP, Zhu Y, et al. Vessel-collateral theory guided rules of syn-drome and treatment of cardiovascular event chain based on medical record data mining and analy-sis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(18): 144-151.] DOI: 10.13422/j.cnki.syfjx.20220651.