Welcome to visit Zhongnan Medical Journal Press Series journal website!

Mechanism research of PI3K/AKT pathway regulating PHF19 gene expression in prostate cancer

Published on Mar. 02, 2024Total Views: 451 timesTotal Downloads: 1175 timesDownloadMobile

Author: MING Daojing 1, 2 GUO Mengmeng 1, 2 ZHANG Jinhui 2 LIU Mengyang 2, 3 SHI Minghui 2, 3 LIU Shuyan 2, 3 YUAN Shuai 2 ZENG Xiantao 1, 2, 3

Affiliation: 1. Department of Urology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China 2. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 3. Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: PI3K/AKT TP63 PHF19 Prostate cancer

DOI: 10.12173/j.issn.1004-5511.202401008

Reference: Ming DJ, Guo MM, Zhang JH, Liu MY, Shi MH, Liu SY, Yuan S, Zeng XT. Mechanism research of PI3K/AKT pathway regulating PHF19 gene expression in prostate cancer[J]. Yixue Xinzhi Zazhi, 2024, 34(2): 121-128. DOI: 10.12173/j.issn.1004-5511.202401008.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the regulatory effect of the PI3K/AKT pathway on PHF19 gene expression in prostate cancer.

Methods  PC-3 cells were treated with the PI3K/AKT pathway inhibitor LY294002 or the activator EGF. Subsequently, the expression of TP63, ΔNp63 and PHF19 mRNA was detected using quantitative reverse transcription PCR (qRT-PCR). Potential transcription factors involved in PHF19 gene regulation were predicted using ChIPBase and JASPAR databases. The correlation between mRNA expressions of TP53, TP63 and PHF19 genes was analyzed through the GEPIA 2 database. Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) was employed to assess the binding of ΔNP63 protein to the PHF19 gene promoter.

Results  LY294002 significantly reduced PHF19 mRNA expression (compared with different time treatment groups, P<0.05), while EGF notably enhanced the PHF19 mRNA expression (compared with different time treatment groups, P<0.05). TP63 mRNA was positively correlated with PHF19 mRNA expression in prostate cancer tissues (r=0.43, P<0.05). ΔNp63 could bind to the promoter region of the PHF19 gene. LY294002 also significantly reduced the expression of both TP63 and ΔNp63 mRNA (compared with different time treatment groups, P<0.05).

Conclusion  The PI3K/AKT pathway may enhance PHF19 gene expression via the transcription factor TP63.

Full-text
Please download the PDF version to read the full text: download
References

1.Siegel RL, Miller KD, Fuchs HE, et al Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.

2.邓通, 蔡林, 陈征, 等. 1990年与2017年中国前列腺癌疾病负担分析[J]. 医学新知, 2020, 30(4): 252-259. [Deng T, Cai L, Chen Z, et al. Analysis of the burden of prostate cancer in China in 1990 and 2017[J]. Yixue Xinzhi Zazhi, 2020, 30(4): 252-259.] DOI: 10.12173/j.issn.1004-5511.2020.04.01.

3.Rebello RJ, Oing C, Knudsen KE, et al. Prostate cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 9. DOI: 10.1038/s41572-020-00243-0.

4.He Y, Xu W, Xiao YT, et al. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials[J]. Signal Transduct Target Ther, 2022, 7(1): 198. DOI: 10.1038/s41392-022-01042-7.

5.Piunti A, Shilatifard A. The roles of polycomb repressive complexes in mammalian development and cancer[J]. Nat Rev Mol Cell Biol, 2021, 22(5): 326-345. DOI: 10.1038/s41580-021-00341-1.

6.Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer[J]. Nature, 2002, 419(6907): 624-629. DOI: 10.1038/nature01075.

7.Morel KL, Sheahan AV, Burkhart DL, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer[J]. Nat Cancer, 2021, 2(4): 444-456. DOI: 10.1038/s43018-021-00185-w.

8.Jain P, Ballare C, Blanco E, et al. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells[J]. Elife, 2020, 9: e51373. DOI: 10.7554/eLife.51373.

9.Yang YA, Yu J. EZH2, an epigenetic driver of prostate cancer[J]. Protein Cell, 2013, 4(5): 331-341. DOI: 10.1007/s13238-013-2093-2.

10.Park SH, Fong KW, Mong E, et al. Going beyond polycomb: EZH2 functions in prostate cancer[J]. Oncogene, 2021, 40(39): 5788-5798. DOI: 10.1038/s41388-021-01982-4.

11.Ghamlouch H, Boyle EM, Blaney P, et al. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 380. DOI: 10.1186/s13046-021-02185-1.

12.Lu R, Wang GG. Tudor: a versatile family of histone methylation 'readers'[J]. Trends Biochem Sci, 2013, 38(11): 546-555. DOI: 10.1016/j.tibs.2013.08.002.

13.Zhu ZY, Tang N, Wang MF, et al. Comprehensive pan-cancer genomic analysis reveals PHF19 as a carcinogenic indicator related to immune infiltration and prognosis of hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 781087. DOI: 10.3389/fimmu.2021.781087.

14.Deng Q, Hou J, Feng L, et al. PHF19 promotes the proliferation, migration, and chemosensitivity of glioblastoma to doxorubicin through modulation of the SIAH1/β-catenin axis[J]. Cell Death Dis, 2018, 9(11): 1049. DOI: 10.1038/s41419-018-1082-z.

15.Ren Z, Ahn JH, Liu H, et al. PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation[J]. Blood, 2019, 134(14): 1176-1189. DOI: 10.1182/blood.2019000578.

16.Shan J, Al-Muftah MA, Al-Kowari MK, et al. Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer[J]. Cell Death Discov, 2019, 5: 139. DOI: 10.1038/s41420-019-0218-y.

17.Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer[J]. Cancer Cell, 2011, 19(5): 575-586. DOI: 10.1016/j.ccr.2011.04.008.

18.Graupera M, Guillermet-Guibert J, Foukas LC, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration[J]. Nature, 2008, 453(7195): 662-666. DOI: 10.1038/nature06892.

19.Zhu S, Jiao W, Xu Y, et al. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway[J]. Life Sci, 2021, 286: 120046. DOI: 10.1016/j.lfs.2021.120046.

20.Huang Q, Li J, Xing J, et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway[J]. J Hepatol, 2014, 61(4): 859-866. DOI: 10.1016/j.jhep.2014.04.035.

21.Abraham AG, O'Neill E. PI3K/Akt-mediated regulation of p53 in cancer[J]. Biochem Soc Trans, 2014, 42(4): 798-803. DOI: 10.1042/bst20140070.

22.Stindt MH, Muller PA, Ludwig RL, et al. Functional interplay between MDM2, p63/p73 and mutant p53[J]. Oncogene, 2015, 34(33): 4300-4310. DOI: 10.1038/onc.2014.359.

23.Iwakuma T, Lozano G. MDM2, an introduction[J]. Mol Cancer Res, 2003, 1(14): 993-1000. https://pubmed.ncbi.nlm.nih.gov/14707282/.

24.Calabrò V, Mansueto G, Parisi T, et al. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63[J]. J Biol Chem, 2002, 277(4): 2674-2681. DOI: 10.1074/jbc.M107173200.

25.Kadakia M, Slader C, Berberich SJ. Regulation of p63 function by Mdm2 and MdmX[J]. DNA Cell Biol, 2001, 20(6): 321-330. DOI: 10.1089/10445490152122433.

26.Claudinot S, Sakabe JI, Oshima H, et al. Tp63-expressing adult epithelial stem cells cross lineages boundaries revealing latent hairy skin competence[J]. Nat Commun, 2020, 11(1): 5645. DOI: 10.1038/s41467-020-19485-3.

27.Parsons JK, Saria EA, Nakayama M, et al. Comprehensive mutational analysis and mRNA isoform quantification of TP63 in normal and neoplastic human prostate cells[J]. Prostate, 2009, 69(5): 559-569. DOI: 10.1002/pros.20904.

28.Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities[J]. Mol Cell, 1998, 2(3): 305-316. DOI: 10.1016/s1097-2765(00)80275-0.

29.Signoretti S, Waltregny D, Dilks J, et al. p63 is a prostate basal cell marker and is required for prostate development[J]. Am J Pathol, 2000, 157(6): 1769-1775. DOI: 10.1016/s0002-9440(10)64814-6.

30.Di Giacomo V, Tian TV, Mas A, et al. ΔNp63α promotes adhesion of metastatic prostate cancer cells to the bone through regulation of CD82[J]. Oncogene, 2017, 36(31): 4381-4392. DOI: 10.1038/onc.2017.42.

31.Lee DK, Liu Y, Liao L, et al. Neuroendocrine prostate carcinoma cells originate from the p63-expressing basal cells but not the pre-existing adenocarcinoma cells in mice[J]. Cell Res, 2019, 29(5): 420-422. DOI: 10.1038/s41422-019-0149-4.

32.He Y, Hooker E, Yu EJ, et al. Androgen signaling is essential for development of prostate cancer initiated from prostatic basal cells[J]. Oncogene, 2019, 38(13): 2337-2350. DOI: 10.1038/s41388-018-0583-7.