1.Siegel RL, Miller KD, Fuchs HE, et al Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
2.邓通, 蔡林, 陈征, 等. 1990年与2017年中国前列腺癌疾病负担分析[J]. 医学新知, 2020, 30(4): 252-259. [Deng T, Cai L, Chen Z, et al. Analysis of the burden of prostate cancer in China in 1990 and 2017[J]. Yixue Xinzhi Zazhi, 2020, 30(4): 252-259.] DOI: 10.12173/j.issn.1004-5511.2020.04.01.
3.Rebello RJ, Oing C, Knudsen KE, et al. Prostate cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 9. DOI: 10.1038/s41572-020-00243-0.
4.He Y, Xu W, Xiao YT, et al. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials[J]. Signal Transduct Target Ther, 2022, 7(1): 198. DOI: 10.1038/s41392-022-01042-7.
5.Piunti A, Shilatifard A. The roles of polycomb repressive complexes in mammalian development and cancer[J]. Nat Rev Mol Cell Biol, 2021, 22(5): 326-345. DOI: 10.1038/s41580-021-00341-1.
6.Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer[J]. Nature, 2002, 419(6907): 624-629. DOI: 10.1038/nature01075.
7.Morel KL, Sheahan AV, Burkhart DL, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer[J]. Nat Cancer, 2021, 2(4): 444-456. DOI: 10.1038/s43018-021-00185-w.
8.Jain P, Ballare C, Blanco E, et al. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells[J]. Elife, 2020, 9: e51373. DOI: 10.7554/eLife.51373.
9.Yang YA, Yu J. EZH2, an epigenetic driver of prostate cancer[J]. Protein Cell, 2013, 4(5): 331-341. DOI: 10.1007/s13238-013-2093-2.
10.Park SH, Fong KW, Mong E, et al. Going beyond polycomb: EZH2 functions in prostate cancer[J]. Oncogene, 2021, 40(39): 5788-5798. DOI: 10.1038/s41388-021-01982-4.
11.Ghamlouch H, Boyle EM, Blaney P, et al. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer[J]. J Exp Clin Cancer Res, 2021, 40(1): 380. DOI: 10.1186/s13046-021-02185-1.
12.Lu R, Wang GG. Tudor: a versatile family of histone methylation 'readers'[J]. Trends Biochem Sci, 2013, 38(11): 546-555. DOI: 10.1016/j.tibs.2013.08.002.
13.Zhu ZY, Tang N, Wang MF, et al. Comprehensive pan-cancer genomic analysis reveals PHF19 as a carcinogenic indicator related to immune infiltration and prognosis of hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 781087. DOI: 10.3389/fimmu.2021.781087.
14.Deng Q, Hou J, Feng L, et al. PHF19 promotes the proliferation, migration, and chemosensitivity of glioblastoma to doxorubicin through modulation of the SIAH1/β-catenin axis[J]. Cell Death Dis, 2018, 9(11): 1049. DOI: 10.1038/s41419-018-1082-z.
15.Ren Z, Ahn JH, Liu H, et al. PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation[J]. Blood, 2019, 134(14): 1176-1189. DOI: 10.1182/blood.2019000578.
16.Shan J, Al-Muftah MA, Al-Kowari MK, et al. Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer[J]. Cell Death Discov, 2019, 5: 139. DOI: 10.1038/s41420-019-0218-y.
17.Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer[J]. Cancer Cell, 2011, 19(5): 575-586. DOI: 10.1016/j.ccr.2011.04.008.
18.Graupera M, Guillermet-Guibert J, Foukas LC, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration[J]. Nature, 2008, 453(7195): 662-666. DOI: 10.1038/nature06892.
19.Zhu S, Jiao W, Xu Y, et al. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway[J]. Life Sci, 2021, 286: 120046. DOI: 10.1016/j.lfs.2021.120046.
20.Huang Q, Li J, Xing J, et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway[J]. J Hepatol, 2014, 61(4): 859-866. DOI: 10.1016/j.jhep.2014.04.035.
21.Abraham AG, O'Neill E. PI3K/Akt-mediated regulation of p53 in cancer[J]. Biochem Soc Trans, 2014, 42(4): 798-803. DOI: 10.1042/bst20140070.
22.Stindt MH, Muller PA, Ludwig RL, et al. Functional interplay between MDM2, p63/p73 and mutant p53[J]. Oncogene, 2015, 34(33): 4300-4310. DOI: 10.1038/onc.2014.359.
23.Iwakuma T, Lozano G. MDM2, an introduction[J]. Mol Cancer Res, 2003, 1(14): 993-1000. https://pubmed.ncbi.nlm.nih.gov/14707282/.
24.Calabrò V, Mansueto G, Parisi T, et al. The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63[J]. J Biol Chem, 2002, 277(4): 2674-2681. DOI: 10.1074/jbc.M107173200.
25.Kadakia M, Slader C, Berberich SJ. Regulation of p63 function by Mdm2 and MdmX[J]. DNA Cell Biol, 2001, 20(6): 321-330. DOI: 10.1089/10445490152122433.
26.Claudinot S, Sakabe JI, Oshima H, et al. Tp63-expressing adult epithelial stem cells cross lineages boundaries revealing latent hairy skin competence[J]. Nat Commun, 2020, 11(1): 5645. DOI: 10.1038/s41467-020-19485-3.
27.Parsons JK, Saria EA, Nakayama M, et al. Comprehensive mutational analysis and mRNA isoform quantification of TP63 in normal and neoplastic human prostate cells[J]. Prostate, 2009, 69(5): 559-569. DOI: 10.1002/pros.20904.
28.Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities[J]. Mol Cell, 1998, 2(3): 305-316. DOI: 10.1016/s1097-2765(00)80275-0.
29.Signoretti S, Waltregny D, Dilks J, et al. p63 is a prostate basal cell marker and is required for prostate development[J]. Am J Pathol, 2000, 157(6): 1769-1775. DOI: 10.1016/s0002-9440(10)64814-6.
30.Di Giacomo V, Tian TV, Mas A, et al. ΔNp63α promotes adhesion of metastatic prostate cancer cells to the bone through regulation of CD82[J]. Oncogene, 2017, 36(31): 4381-4392. DOI: 10.1038/onc.2017.42.
31.Lee DK, Liu Y, Liao L, et al. Neuroendocrine prostate carcinoma cells originate from the p63-expressing basal cells but not the pre-existing adenocarcinoma cells in mice[J]. Cell Res, 2019, 29(5): 420-422. DOI: 10.1038/s41422-019-0149-4.
32.He Y, Hooker E, Yu EJ, et al. Androgen signaling is essential for development of prostate cancer initiated from prostatic basal cells[J]. Oncogene, 2019, 38(13): 2337-2350. DOI: 10.1038/s41388-018-0583-7.