Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research Progress on the osteogenic differentiation of ADSCs induced by epimedium in the prevention and treatment of osteoporosis

Published on Oct. 25, 2023Total Views: 1514 timesTotal Downloads: 524 timesDownloadMobile

Author: Hai-Quan LIU 1, 2 Mei-Jian-Zong WU 1, 2 Zu-Yu MENG 3

Affiliation: 1. Department of Orthopaedics, Huizhou Hospital of Guangzhou University of Chinese Medicine, Huizhou 516000, Guangdong Province, China 2. Department of Orthopaedics, Huizhou Hospital of Traditional Chinese Medicine, Huizhou 516000, Guangdong Province, China 3. School of Traditional Chinese Medicine, Jinan University, Guangzhou 510000, China

Keywords: Epimedium Osteoporosis ADSCs Osteogenic differentiation PPARγ/Hippo/Ajuba pathway

DOI: 10.12173/j.issn.1004-5511.202303044

Reference: Liu HQ, Wu MJZ, Meng ZY. Research Progress on the osteogenic differentiation of ADSCs induced by epimedium in the prevention and treatment of osteoporosis[J]. Yixue Xinzhi Zazhi, 2023, 33(5): 381-388. DOI: 10.12173/j.issn.1004-5511.202303044.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Osteoporosis (OP) is a chronic, systemic bone disease. With the arrival of the aging society, the research on the prevention and treatment of this disease is increasing. Finding effective drugs to induce osteogenesis and differentiation of adipose-derived mesenchymal stem cells (ADSCs) is currently a more focused strategy for prevention and treatment of OP. Peroxisome proliferator-activated receptor gamma (PPARγ) is the key protein of adipocyte differentiation. Studies have confirmed that the intervention of epimedium on bone marrow mesenchymal stem cells (BMSCs) can inhibit the expression of PPARγ, thus inhibits  adipogenic differentiation of BMSCs and promotes their osteogenic differentiation. Hippo signal pathway controls the activity of YAP/TAZ transcriptional coactivator through kinase cascade and inhibiting PPARγ, which can inhibit ADSCs from differentiating into adipocytes. Ajuba is an important regulator of adipogenic differentiation of cells and a new PPARγ interacting proteins which can limit the activity of Hippo signaling pathway during cell proliferation. Epimedium has unique advantages in the prevention and treatment of OP. Previous studies found that epimedium can promote the osteogenic differentiation of ADSCs and inhibit their lipogenic differentiation. PPARγ, Hippo pathway and Ajuba are closely related in the pathogenesis of OP. According to previous research, this paper is purposed to review the mechanism of epimedium in ADSCs for the prevention and treatment of OP, and to provide a reference for the development of new clinical drugs.

Full-text
Please download the PDF version to read the full text: download
References

1.Lan C, Long L, Xie K, et al. miRNA-429 suppresses osteogenic differentiation of human adipose-derived  mesenchymal stem cells under oxidative stress via targeting SCD-1[J]. Exp Ther Med, 2022, 23(6): 384. DOI: 10.3892/etm.2022.11311.

2.赖文涛, 张晓璐, 张春阳, 等. 脂肪干细胞转染Bmp2后成骨能力变化的研究[J]. 生物骨科材料与临床研究, 2022, 19(1): 15-19. [Lai WT, Zhang XL, Zhang CY, et al. Study in the changes of osteogenic capacity of adipose stem cells after transfection with Bmp2[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2022, 19(1): 15-19.] DOI: 10.3969/j.issn.1672-5972.2022.01.004.

3.Fu Y, Liu H, Long M, et al. Icariin attenuates the tumor growth by targeting miR-1-3p/TNKS2/Wnt/β-catenin  signaling axis in ovarian cancer[J]. Front Oncol, 2022, 12: 940926. DOI: 10.3389/fonc.2022.940926.

4.Gao J, Fu Y, Song L, et al. Proapoptotic effect of icariin on human ovarian cancer cells via the NF-[formula:  see text]B/PI3K-AKT signaling pathway: a network pharmacology-directed experimental investigation[J]. Am J Chin Med, 2022, 50(2): 589-619. DOI: 10.1142/S0192415X22500239.

5.吴梅剑宗, 秦佳佳, 刘海全. 不同浓度淫羊藿苷对大鼠脂肪干细胞成骨分化相关因子的体外研究[J]. 北京中医药大学学报, 2022, 45(12): 1249-1256. [Wu MJZ, Qin JJ, Liu HQ. Effect of icariin on osteogenic differentiation of rat adipose-derived stem cells in vitro[J]. Journal of Beijing University of Traditional Chinese Medicine, 2022, 45(12): 1249-1256.] DOI: 10.3969/j.issn.1006-2157.2022.12.021.

6.段小云, 仲瑞雪, 吴传红, 等. 基于数据挖掘和网络药理学探讨中医药治疗骨质疏松症的用药规律及机制[J].中国医院用药评价与分析, 2023, 23(2): 162-168. [Duan XY, Zhong RX, Wu CH, et al. Regularity and mechanism of traditional chinese medicine in the treatment of osteoporosis based on data mining and network pharmacology[J]. Evaluation and Analysis of Drug-Use in Hospitals of China, 2023, 23(2): 162-168.] DOI: 10.14009/j.issn.1672-2124.2023.02.007.

7.张莎, 闫平慧, 张淑珍, 等. 补肝肾活血类中药防治老年性骨质疏松症的Meta分析[J]. 中医药导报, 2019, 25(19): 75-80, 99. [Zhang S, Yan PH, Zhang SZ, et al. A meta-analysis on the prevention and treatment of senile osteoporosis with traditional chinese medicine of tonifying liver and kidney and promoting blood circulation[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacology, 2019, 25(19): 75-80, 99.] DOI: 10.13862/j.cnki.cn43-1446/r.2019.19.019.

8.He C, Wang Z, Shi J. Pharmacological effects of icariin[J]. Adv Pharmacol, 2020, 87: 179-203. DOI: 10.1016/bs.apha.2019.10.004.

9.李艳, 于涛, 苗明三. 淫羊藿的化学、药理与临床应用分析[J]. 中医学报, 2017, 32(4): 619-622. [Li Y, Yu T, Miao MS. Analysis of chemistry, pharmacology and clinical application of Yinyanghuo[J]. China Journal of Chinese Medicine, 2017, 32(4): 619-622.] DOI: 10.16368/j.issn.1674-8999.2017.04.162.

10.Verma A, Aggarwal K, Agrawal R, et al. Molecular mechanisms regulating the pharmacological actions of icariin with  special focus on PI3K-AKT and Nrf-2 signaling pathways[J]. Mol Biol Rep, 2022, 49(9): 9023-9032. DOI: 10.1007/s11033-022-07778-3.

11.张润桐, 吴海宁, 于桂红, 等. 基于网络药理学的淫羊藿防治疾病的优效组分及信号通路研究[J]. 中国中药杂志, 2018, 43(23): 4709-4717. [Zhang RT, Wu HN, Yu GH, et al. Effective components and signaling pathways of epimedium brevicornum based on network pharmacology[J]. China Journal of Chinese Materia Medica, 2018, 43(23): 4709-4717.] DOI: 10.19540/j.cnki.cjcmm.20180905.001.

12.付殷, 刘宇洲, 胡晓阳, 等. 基于铁死亡通路研究淫羊藿苷对大鼠成骨细胞增殖分化的影响[J]. 时珍国医国药, 2022, 33(9): 2100-2103. [Fu Y, Liu YZ, Hu XY, et al. Effect of icariin on proliferation and differentiation of rat osteoblasts based on ferroptosis pathway[J]. Lishizhen Medicine and Materia Medica Research, 2022, 33(9): 2100-2103.] https://xueshu.baidu.com/usercenter/paper/show?paperid=1b5j0ak0t91h00d08c4002507q593410&site=xueshu_se&hitarticle=1.

13.王绪平, 张扬, 黄孝闻, 等. 补肾健骨类中药活性成分对高糖诱导成骨细胞的保护作用及机制研究[J]. 浙江中医杂志, 2021, 56(4): 241-244. [Wang XP, Zhang Y, Huang XW, et al. Effects of active ingredients of kidney-tonifying Traditional Chinese Medicine on proliferation of osteoblasts in high glucose rats[J]. Zhejiang Journal of Traditional Chinese Medicine, 2021, 56(4): 241-244.] DOI: 10.3969/j.issn.0411-8421.2021.04.003.

14.李志伟, 任然悦, 李孟伟, 等. 淫羊藿苷通过促进负调控因子Gα13的表达抑制破骨细胞形成[J]. 骨科, 2022, 13(2): 155-159. [Li ZW, Ren RY, Li MW, et al. Icariin inhibits osteoclast formation by promoting the expression of negative regulator Gα13[J]. Orthopaedics, 2022, 13(2): 155-159.] DOI: 10.3969/j.issn.1674-8573.2022.02.012.

15.李倩楠, 陈大琴, 吕春明, 等. 淫羊藿苷通过Nrf2/HO-1/GPX4信号通路调节破骨细胞铁代谢的机制研究[J].上海中医药大学学报, 2022, 36(S1): 232-239. [Li QN, Chen DQ, Lyu CM, et al. Mechanism study of icariin on regulating iron metabolism in osteoclast through Nrf2/HO-1/GPX4 signal pathway[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2022, 36(S1): 232-239.] DOI: 10.16306/j.1008-861x.2022.S1.048.

16.吴峻. 淫羊藿苷对去卵巢骨质疏松大鼠骨细胞凋亡及骨组织OPG、RANKL mRNA表达影响[J]. 辽宁中医药大学学报, 2019, 21(2): 19-22. [Wu J. Effect of Icariin on apoptosis of bone cells and expression of OPG, RANKL and mRNA in bone tissue of ovariectomized rats with osteoporosis[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2019, 21(2): 19-22.] DOI: 10.13194/j.issn.1673-842x.2019.02.005.

17.刘宁, 郭芳, 黄硕. 淫羊藿苷对小鼠脂肪干细胞成骨分化的促进作用[J]. 山西医科大学学报, 2019, 50(9): 1249-1253. [Liu N, Guo F, Huang S. Effect of icariin on osteogenic differentiation of adipose-derived mesenchymal stem cells[J]. Journal of Shanxi Medical University, 2019, 50(9): 1249-1253.] DOI: 10.13753/j.issn.1007-6611.2019.09.013.

18.Ye Y, Jing X, Li N, et al. Icariin promotes proliferation and osteogenic differentiation of rat  adipose-derived stem cells by activating the RhoA-TAZ signaling pathway[J]. Biomed Pharmacother, 2017, 88: 384-394. DOI: 10.1016/j.biopha.2017.01.075.

19.迟利业, 原超, 卢义, 等. 淫羊藿含药血清对BMSCs中Sirt1mRNA的表达的影响[J]. 时珍国医国药, 2018, 29(11): 2575-2577. [Chi YL, Yuan C, Lu Y, et al. Experimental study on the expression of Sirt1 mRNAin the BMSCs of rats with osteoporosis by epimedium medicated serum[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(11): 2575-2577.] DOI: 10.3969/j.issn.1008-0805.2018.11.006.

20.刘海全, 秦佳佳, 吴倩. 淫羊藿对骨质疏松MSCs成脂分化PPARγ mRNA表达的影响[J]. 中药新药与临床药理, 2013, 24(4): 382-385. [Liu HQ, Qin JJ, Wu Q. Effect of herb epimedii on expression of PPARγ mRNA of MSCs during adipogenesis in postmenopausal osteoporosis rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2013, 24(4): 382-385.] DOI: CNKI:SUN:ZYXY.0.2013-04-017.

21.Si Z, Wang X, Sun C, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative  therapies[J]. Biomed Pharmacother, 2019, 114: 108765. DOI: 10.1016/j.biopha.2019.108765.

22.Chen HT, Lee MJ, Chen CH, et al. Proliferation and differentiation potential of human adipose-derived mesenchymal  stem cells isolated from elderly patients with osteoporotic fractures[J]. J Cell Mol Med, 2012, 16(3): 582-593. DOI: 10.1111/j.1582-4934.2011.01335.x.

23.Kocan B, Maziarz A, Tabarkiewicz J, et al. Trophic activity and phenotype of adipose tissue-derived mesenchymal stem cells as a background of their regenerative potential[J]. Stem Cells Int, 2017, 2017: 1653254. DOI: 10.1155/2017/1653254.

24.Liu N, Wang G, Zhen Y, et al. Factors influencing myogenic differentiation of adipose-derived stem cells and their application in muscle regeneration[J]. Chinese Journal of Plastic and Reconstructive Surgery, 2022, 4(3): 126-132. DOI: 10.1016/J.CJPRS.2022.06.006.

25.郭延伟, 王永曼, 杨世茂, 等. SDF-1/NELL-1双基因转染促进脂肪干细胞体外成骨[J]. 中国矫形外科杂志, 2022, 30(17): 1597-1602. [Guo YW, Wang YM, Yang SM, et al. SDF-1 and NELL-1 co-transfection promotes osteogenesis differentiation of rabbit adipose stem cells in vitro[J]. Orthopedic Journal of China, 2022, 30(17): 1597-1602.] DOI: 10.3977/j.issn.1005-8478.2022.17.11.

26.李建卫, 李焕焕, 杨勇, 等. 张应力作用下小鼠脂肪间充质干细胞骨向分化过程中成骨相关微小RNA表达模式[J]. 滨州医学院学报, 2021, 44(4): 247-251. [Li JW, Li HH, Yang Y, et al. Osteogenesis-related microRNA expression pattern analysis during osteogenic differentiation of murine adipose-derived mesenchymal stem cells under tensile stress[J]. Journal of Binzhou Medical University, 2021, 44(4): 247-251.] DOI: 10.19739/j.cnki.issn1001-9510.2021.04.002.

27.Zhang L, Wang Y, Zhou N, et al. Cyclic tensile stress promotes osteogenic differentiation of adipose stem cells  via ERK and p38 pathways[J]. Stem Cell Res, 2019, 37: 101433. DOI: 10.1016/j.scr.2019.101433.

28.卓丽丹, 冯顶丽, 芦笛, 等. 大鼠骨髓间充质干细胞和脂肪干细胞体外成骨能力的比较[J]. 实用口腔医学杂志, 2018, 34(6): 730-735. [Zhuo LD, Feng DL, Lu D, et al. Comparison of the osteogenic ability of rat bone marrow stem cells and adipose stem cells in vitro[J]. Journal of Practical Stomatology, 2018, 34(6): 730-735. DOI: 10.3969/j.issn.1001-3733.2018.06.002.

29.Naderi N, Griffin MF, Mosahebi A, et al. Adipose derived stem cells and platelet rich plasma improve the tissue  integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration[J]. Mol Biol Rep, 2020, 47(3): 2005-2013. DOI: 10.1007/s11033-020-05297-7.

30.Liu X, Xu Q, Long X, et al. Silibinin-induced autophagy mediated by PPARα-sirt1-AMPK pathway participated in  the regulation of type I collagen-enhanced migration in murine 3T3-L1 preadipocytes[J]. Mol Cell Biochem, 2019, 450(1-2): 1-23. DOI: 10.1007/s11010-018-3368-y.

31.汪盛玉, 陈超, 张文财, 等. 淫羊藿含药血清对骨质疏松大鼠BMSCs的Sirt1及PPARγ mRNA表达的影响[J]. 中药新药与临床药理, 2019, 30(3): 296-300. [Wang SY, Chen C, Zhang WC, et al. Experimental study of epimedium medicated serum on the expression of Sirt1 mRNA and PPARγ mRNA in the BMSCs of rats with osteoporosis[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2019, 30(3): 296-300.] DOI: 10.19378/j.issn.1003-9783.2019.03.005.

32.刘海全, 秦佳佳. 淫羊藿含药血清对骨质疏松大鼠骨髓基质干细胞成脂分化PPARγ mRNA表达的影响[J]. 北京中医药大学学报, 2012, 35(9): 611-614. [Liu HQ, Qin JJ. Influence of medicated serum of Yinyanghuo (Herba Epimedii) on expression of PPARγ mRNA in MSCs after adipogenic differentiation in rats with osteoporosis[J]. Journal of Beijing University of Traditional Chinese Medicine, 2012, 35(9): 611-614.] https://d.wanfangdata.com.cn/periodical/bjzyydxxb201209008.

33.Lavado A, Park JY, Paré J, et al. The Hippo pathway prevents YAP/TAZ-driven hypertranscription and controls neural progenitor number[J]. Dev Cell, 2018, 47(5): 576-591. DOI: 10.1016/j.devcel.2018.09.021.

34.徐娇, 曹秀萍, 唐子娟, 等. Hippo信号通路主要分子与卵巢生殖干细胞相关因子在人和小鼠卵巢衰退过程中的表达相关[J]. 生理学报, 2019, 71(3): 405-414. [Xu J, Cao XP, Tang ZJ, et al. Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice[J].Acta Physiologica Sinica, 2019, 71(3): 405-414.] DOI: 10.13294/j.aps.2019.0034.

35.胡佳安, 吴亚平, 黄蓉, 等. TAZ激动剂TM-25659促进人脂肪干细胞成骨的体内外研究[J]. 南京医科大学学报(自然科学版), 2019, 39(7): 971-977. [Hu JA, Wu YP, Huang R, et al. The TAZ chemical activator TM-25659 facilitates osteogenic differentiation of human ADSCs in vitro and in vivo[J]. Journal of Nanjing Medicial University, 2019, 39(7): 971-977.] DOI: 10.7655/NYDXBNS20190705.

36.El Ouarrat D, Isaac R, Lee YS, et al. TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance[J]. Cell Metab, 2020, 31(1): 162-173. DOI: 10.1016/j.cmet.2019.10.003.

37.Pan H, Xie Y, Zhang Z, et al. YAP-mediated mechanotransduction regulates osteogenic and adipogenic  differentiation of BMSCs on hierarchical structure[J]. Colloids Surf B Biointerfaces, 2017, 152: 344-353. DOI: 10.1016/j.colsurfb.2017.01.039.

38.Jagannathan R, Schimizzi GV, Zhang K, et al. AJUBA LIM proteins limit Hippo activity in proliferating cells by sequestering the hippo core kinase complex in the cytosol[J]. Mol Cell Biol, 2016, 36(20): 2526-2542. DOI: 10.1128/MCB.00136-16.

39.Misra JR, Irvine KD. The Hippo signaling network and its biological functions[J]. Annu Rev Genet, 2018, 52: 65-87. DOI: 10.1146/annurev-genet-120417-031621.

40.Yan H, Li Q, Li M, et al. Ajuba functions as a co-activator of C/EBPβ to induce expression of PPARγ and  C/EBPα during adipogenesis[J]. Mol Cell Endocrinol, 2022, 539: 111485. DOI: 10.1016/j.mce.2021.111485.

41.Li Q, Peng H, Fan H, et al. The LIM protein Ajuba promotes adipogenesis by enhancing PPARγ and p300/CBP interaction[J]. Cell Death Differ, 2016, 23(1): 158-168. DOI: 10.1038/cdd.2015.83.

42.Park JS, Kim D, Hong HS. Priming with a combination of FGF2 and HGF restores the impaired osteogenic  differentiation of adipose-derived stem cells[J]. Cells, 2022, 11(13): 2042. DOI: 10.3390/cells11132042.

43.Zhou YH, Xie Q. Total glycosides from eucommia ulmoides seed promoted osteogenic differentiation  of adipose-derived mesenchymal stem cells and bone formation in ovariectomized rats through regulating Notch signaling pathway[J]. J Orthop Surg Res, 2021, 16(1): 660. DOI: 10.1186/s13018-021-02797-5.

44.李广章, 蒋召芹, 刘志新. 脂肪源干细胞移植骨质疏松模型大鼠骨密度及骨形态计量学指标的变化[J]. 中国组织工程研究, 2016, 20(32): 4825-4830. [Li GZ, Jiang ZQ, Liu ZX. Adipose-derived stem cell transplantation for osteoporosis rats: evaluation by bone mineral density and histomorphometry measurement[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(32): 4825-4830. DOI: 10.3969/j.issn.2095-4344.2016.32.017.

45.杨天赤, 李卫华, 王震. 淫羊藿苷对与复合支架共培养脂肪干细胞成骨分化的影响[J]. 现代中西医结合杂志, 2020, 29(1): 30-33. [Yang TC, Li WH, Wang Z. Effect of icariin on osteogenic differentiation of adipose-derived stem cells co-cultured with composite scaffolds[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2020, 29(1): 30-33.] DOI: 10.3969/j.issn.1008-8849.2020.01.007.