Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research on real-world knowledge mining and knowledge graph completion (I): overview of re-al-world data and knowledge map

Published on Apr. 25, 2023Total Views: 3321 timesTotal Downloads: 1244 timesDownloadMobile

Author: Xu-Hui LI 1 Si-Yu YAN 1 Mu-Kun CHEN 2 Hai-Feng ZHU 2 Jie-Jun TAN 2 Kuang GAO 2 Yong-Bo WANG 1 Qiao HUANG 1 Xiang-Ying REN 1 Ying-Hui JIN 1 Xing-Huan WANG 1

Affiliation: 1. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 2. School of Computer Science, Wuhan University, Wuhan 430072, China

Keywords: Real-world data Knowledge map Electronic medical record

DOI: 10.12173/j.issn.1004-5511.202301018

Reference: Li XH, Yan SY, Chen MK, Zhu HF, Tan JJ, Gao K, Wang YB, Huang Q, Ren XY, Jin YH, Wang XH. Research on real-world knowledge mining and knowledge graph completion (I): overview of real-world data and knowledge map[J]. Yixue Xinzhi Zazhi, 2023, 33(2): 130-135. DOI: 10.12173/j.issn.1004-5511.202301018. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

The real-world data comes from the real medical environment, which can reflect the med-ical process and the patient's health status under real clinical conditions, and can be used as an important source of evidence and knowledge. As a semantic network, knowledge map can be used to organize, pre-sent and reason medical knowledge. The combination of real-world data and knowledge map can better supplement, display and use medical knowledge. At present, using real-world data to build a medical knowledge map or using real-world data to complete the medical knowledge map are the main ways of combining the two applications. When carrying out the application research on the combination of re-al-world data and medical knowledge map, attention should be paid to the issues about the multidiscipli-nary team collaboration, patient privacy protection and data standardization.

Full-text
Please download the PDF version to read the full text: download
References

1.Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world evidence - what is it and what can it tell us?[J]. N Engl J Med 2016, 375(23):2293-2297. DOI: 10.1056/NEJMsb1609216.

2.彭晓霞, 舒啸尘, 谭婧, 等. 基于真实世界数据评价治疗结局的观察性研究设计技术规范[J]. 中国循证医学杂志, 2019, 19(7): 779-786. [Peng XX, Shu XC, Tan J, et, al. Technical guidance for designing observational studies to assess therapeutic outcomes using real-world data[J]. Chinese Journal of Evidence-Based Medicine, 2019, 19(7): 779-786.] DOI: 107507/1672-2531.201904164.

3.施秀青, 阎思宇, 黄桥, 等. 真实世界研究:弥合临床实践指南与临床决策之间的距离[J]. 协和医学杂志,  2022, 13(6): 1-18. [Shi XQ, Yan SY, Huang Q, et,al. Real world research: helping clinical practice guidelines span the distance between itself and clinical decision making[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 13(6): 1-18.] DOI: 10.12290/xhyxzz.2022-0217.

4.国家药品监督管理局.关于发布真实世界证据支持药物研发与审评的指导原则(试行) [EB/OL]. (2020-01-07) [2022-12-05]. https://www.nmpa.gov.cn/xxgk/ggtg/qtggtg/20200107151901190.html.

5.国家药品监督管理局药品审评中.用于产生真实世界证据的真实世界数据指导原则(试行)[EB/OL].(2021-04-15) [2022-12-05]. https://www.cde.org.cn/main/news/viewInfoCommon/2a1c437ed54e7b838a7e86f4ac21c539.

6.李绪辉, 黄桥, 王永博, 等. 临床实践指南实施性促进研究之一:实施性现状与促进策略[J]. 医学新知, 2021, 31(6): 410-418. [Li XH, Huang Q, Wang YB, et, al. Research on promotion of implementation of clinical prac-tice guidelines (Ⅰ): the status of implementation and promotion strategies[J]. New Medicine, 2021, 31(6): 410-418.] DOI: 10.12173/j.issn.1004-5511.202111064.

7.徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报,  2016, 45(4): 589-606. [Xu ZL, Sheng YP. He LR, et, al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606.] DOI: 10.3969/j.issn.1001-0548.2016.04.012.

8.谭玲, 鄂海红, 匡泽民, 等. 医学知识图谱构建关键技术及研究进展[J]. 大数据,  2021, 7(4): 80-104. [ Tan L, E HH, Kuang ZM, et, al. Key technologies and research progress of medical knowledge graph construction[J]. Big Data Research, 2021, 7(4): 80-104.] DOI: 10.11959/issn.2096-0271.2021040.

9.侯梦薇, 卫荣, 陆亮, 等. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展, 2018, 55(12): 2587-2599. [Hou MW, Wei R, Lu L, et, al. Research review of knowledge graph and its application in medical domain[J]. Journal of Computer Research and Development, 2018, 55(12): 2585-2599.] DOI: 10.7544/issn1000-1239.2018.20180623.

10.黄梦醒, 李梦龙, 韩惠蕊. 基于电子病历的实体识别和知识图谱构建的研究[J]. 2019, 36(12): 3735-3739. [Huang MX, Li ML, Han HR. Research on entity recognition and knowledge graph construction based on elec-tronic medical records[J]. 2019, 36(12): 3735-3739.] DOI: 10.19734/j.issn.1001-3695.2018.07.0414.

11.刘燕 , 傅智杰 , 李姣 , 等 . 医学百科知识图谱构建[J]. 中华医学图书情报杂志 , 2018, 27(6): 28-34. [Liu Y, Fu ZJ, Li J, et, al. Generation of medical encyclopedia knowledge graph[J]. Chinese Journal of Medical Li-brary and Information Science, 2018, 27(6): 28-34.] DOI: 10.3969/j.issn.1671-3982.2018.06.005.

12.Shi L, Li S, Yang X, et al. Semantic Health knowledge graph: semantic integration of heterogeneous medical knowledge and services[J]. Biomed Res Int 2017, 2017:2858423. DOI: 10.1155/2017/2858423. Epub 2017 Feb 12.

13.孙 郑 煜 , 鄂 海 红 , 宋 美 娜 , 等 . 基 于 大 数 据 技 术的 医 学 知 识 图 谱 构 建 方 法 [J]. 软 件 , 2020, 41(1): 13-17. [Sun ZY, E HH, Song MN, et, al. The method of medical knowledge graphs con-struction based on big data technology[J]. Computer Engineering & Software, 2020, 41(1): 13-17.] DOI: 10.3969/j.issn.1003-6970.2020. 01.003.

14.Jagannatha AN, Yu H. Structured prediction models for RNN based sequence labeling in clinical text[J]. Proc Conf Empir Methods Nat Lang Process 2016, 2016: 856-865. DOI: 10.18653/v1/d16-1082.

15.车超 , 刘迪 . 基于双向对齐与属性信息的跨语言实体对齐 [J]. 计算机工程 , 2022, 48(3): 74-80. [Che C, Liu D. Cross-language entity alignment based on bidirectional alignment and attribute information[J]. Com-puter Engineering, 2022, 48(3): 74-80.] DOI: 10.19678/j.issn.1000-3428.0060540.

16.尹梓名 , 杜方芮 , 赵紫彤 , 等 . 基于临床指南的知识 图 谱 构 建 技 术 研 究 [J]. 软 件 , 2020, 41(9): 178-184, 197. [Yin ZM, Du FR, Zhao ZD, et, al. Research on knowledge graph construction technology based on clinical guidelines[J]. Computer Engineering & Software, 2020, 41(9): 178-184, 197. ] DOI: 10.3969/j.issn.1003-6970.2020.09.047.

17.Yu T, Li J, Yu Q, et al. Knowledge graph for TCM health preservation: Design, construction, and appli-cations[J]. Artif Intell Med, 2017, 77: 48-52. DOI: 10.1016/j.artmed.2017.04.001.

18.Huang Z, Yang J, van Harmelen F, et al. Constructing knowledge graphs of depression[C]. Health In-formation Science: 6th International Conference, 2017, Proceedings 6. Springer International Publish-ing, 2017: 149-161.

19.Fang A, Lou P, Hu J, et al. Head and tail entity fusion model in medical knowledge graph construction: case study for pituitary adenoma[J]. JMIR Med Inform 2021, 9(7): e28218. DOI: 10.2196/28218.

20.Chai X: Diagnosis method of thyroid disease combining knowledge graph and deep learning[J]. IEEE Access, 2020, 8:149787-149795. DOI: 10.1109/ACCESS.2020.3016676.

21.陈潮 , 杨铭 , 李雪 , 等 . 真实世界研究受试者隐私保护现状及最新进展 [J]. 医学与哲学 , 2021, 42(21): 1-5,10. [Chen C, Yang M, Li X, et, al. The present situation and latest progress of subject privacy protection in real world study[J]. Medicine & Philosophy, 2021, 42(21): 1-5,10.] DOI: 10.12014/j.issn.1002-0772.2021.21.01.

22.何勇群 , 余红 , 杨啸林 , 等 . 本体 : 生物医学大数据 与 精 准 医 学 研 究 的 基 础 [J]. 生 物 信 息 学 , 2018, 16(1): 7-14. [He YQ, Yu H, Yang XL, et, al. Ontology: foundation of biomedical big data and pre-cision medicine research[J]. China Journal of Bioinformatics, 2018, 16(1): 7-14.] DOI: 10.3969/j.issn.1672-5565.201710006.

23.范媛媛 , 李忠民 . 中文医学知识图谱研究及应用进展 [J]. 计 算 机 科 学 与 探 索 , 2022: 16(10): 2219-2233. [Fan YY, Li ZM. Research and application progress of chinese medical knowledge graph[J]. Journal of Frontiers of Computer Science & Technology, 2022: 16(10): 2219-2233.] DOI: 10.3778/j.issn.1673-9418.2112118.