Coronary heart disease and cognitive impairment are both major diseases harmful to human health. A large number of studies have shown that coronary heart disease increases the risk of cognitive impairment in patients with the disease. It is of great clinical significance to explore the mechanism, prevention and treatment of such comorbidities. Research on the pathogenesis and treat-ment of cognitive impairment secondary to coronary heart disease has currently become a hot topic. It is critical to build and select an appropriate animal model to successfully carry out relevant experimental research. This paper systematically summarizes the methods of constructing animal models of cognitive impairment secondary to coronary heart disease. It also combs the commonly used detection indicators and evaluation methods in order to provide a reference for the experimental study of cognitive impair-ment secondary to coronary heart disease.
HomeArticlesVol 32,2022 No.4Detail
Advances in animal models of cognitive impairment secondary to coronary heart disease
Published on Aug. 25, 2022Total Views: 3171 timesTotal Downloads: 1477 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Kasprzak D, Rzezniczak J, Ganowicz T, et al. A review of acute coronary syndrome and its potential impact on cognitive function[J]. Glob Heart, 2021, 16(1): 53. DOI: 10.5334/gh.934.
2.Deckers K, Schievink SHJ, Rodriquez MMF, et al. Coronary heart disease and risk for cognitive im-pairment or dementia: systematic review and meta-analysis[J]. PLoS One, 2017, 12(9): e0184244. DOI: 10.1371/journal.pone.0184244.
3.Greaves D, Psaltis PJ, Ross TJ, et al. Cognitive outcomes following coronary artery bypass grafting: a systematic review and meta-analysis of 91,829 patients[J]. Int J Cardiol, 2019, 289: 43-49. DOI: 10.1016/j.ijcard. 2019.04.065.
4.Stewart RAH, Held C, Krug-Gourley S, et al. Cardiovascular and lifestyle risk factors and cognitive function in patients with stable coronary heart disease[J]. J Am Heart Assoc, 2019, 8(7): e010641. DOI: 10.1161/JAHA. 118.010641.
5.Kovacic JC, Moreno P, Nabel EG, et al. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review: clinical vascular disease in the elderly[J]. Circulation, 2011, 123(17): 1900-1910. DOI: 10.1161/CIRCULATIONAHA.110.009118.
6.Shabir O, Berwick J, Francis SE. Neurovascular dysfunction in vascular dementia, Alzheimer's and ath-erosclerosis[J]. BMC Neurosci, 2018, 19(1): 62. DOI: 10.1186/s12868-018-0465-5.
7.Stellos K, Katsiki N, Tatsidou P, et al. Association of platelet activation with vascular cognitive im-pairment: implications in dementia development?[J]. Curr Vasc Pharmacol, 2014, 12(1): 152-154. DOI: 10.2174/157016111201140327164641.
8.Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer-diseases with a common cause? Inflammation, oxysterols, vasculature[J]. BMC Geriatr, 2014, 14: 36. DOI: 10.1186/1471-2318-14-36.
9.Hainsworth AH, Allan SM, Boltze J, et al. Translational models for vascular cognitive impairment: a re-view including larger species[J]. BMC Med, 2017, 15(1): 16. DOI: 10.1186/s12916-017-0793-9.
10.闻荻豪, 李昱, 孙羽东, 等. 认知功能障碍动物模型造模方法的进展[J]. 中国血管外科杂志(电子版), 2021, 13(3): 260-263. [Wen DH, Li Y, Sun YD, et al. Progress in modeling methods of animal models with cognitive impairment[J]. Chinese Journal of Vascular Surgery (Electronic Version), 2021, 13(3): 260-263.] DOI: 10.3969/j.issn.1674-7429.2021.03.019.
11.Refinetti R, Kenagy GJ. Diurnally active rodents for laboratory research[J]. Lab Anim, 2018, 52(6): 577-587. DOI: 10.1177/0023677218771720.
12.许官学, 石蓓, 盛瑾, 等. 改良大鼠急性心肌梗死模型的制备方法[J]. 中国老年学杂志, 2013, 33(14): 3367-3370. [Xu GX, Shi B, Sheng J, et al. Preparation method of modified acute myocardial infarction model in rats[J]. Chinese Journal of Gerontology, 2013, 33(14): 3367-3370.] DOI: 10.3969/j.issn.1005-9202.2013.14.041.
13.王克柱, 徐攀, 卢聪, 等. 两品系大鼠在经典条件反射和操作式条件反射中的行为学表现[J]. 中国实验动物学报, 2016, 24(1): 65-71. [Wang KZ, Xu P, Lu Cong, et al. Behavioral differences of the Sprague-Dawley and Wistar rats in Pavlovian conditioning and reward operant conditioning [J]. Acta Laboratorium Animalis Scientia Sinica, 2016, 24(1): 65-71.] DOI: 10.3969/j.issn.1005-4847.2016.01.012.
14.侯外方, 张茂森, 张琳, 等. 血管性认知障碍动物模型的研究进展[J]. 中国实验动物学报, 2021, 29(4): 542-552. [Hou WF, Zhang MS, Zhang L, et al. Research progress using animal models of vascular cognitive im-pairment[J]. Acta Laboratorium Animalis Scientia Sinica, 2021, 29(4): 542-552.] DOI: 10.3969/j.issn.1005-4847.2021.04.017.
15.Goodarzi P, Payab M, Alavi-Moghadam S, et al. Development and validation of alzheimer's disease animal model for the purpose of regenerative medicine[J]. Cell Tissue Bank, 2019, 20(2): 141-151. DOI: 10.1007/s10561-019-09773-8.
16.王雪羽, 田进伟. 易损斑块动物模型研究进展[J]. 中国心血管杂志, 2019, 24(6): 575-578. [Wang XY, Tian JW. Research progress in animal models of vulnerable plaque[J]. Chinese Journal of Cardiovascular Medi-cine, 2019, 24(6): 575-578.] DOI: 10.3969/j.issn.1007-5410. 2019.06.020.
17.Zhao Y, Qu H, Wang Y, et al. Small rodent models of atherosclerosis[J]. Biomed Pharmacother, 2020, 129: 110426. DOI: 10.1016/j.biopha.2020.110426.
18.Long Y, Zhao XT, Liu C, et al. A case-control study of the association of the polymorphisms of MTHFR and APOE with risk factors and the severity of coronary artery disease[J]. Cardiology, 2019, 142(3): 149-157. DOI: 10.1159/000499866.
19.Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis[J]. JAMA, 2015, 313(19): 1924-1938. DOI: 10.1001/jama.2015.4668.
20.Tran T, Corsini S, Kellingray L, et al. APOE genotype influences the gut microbiome structure and func-tion in humans and mice: relevance for Alzheimer's disease pathophysiology[J]. FASEB J, 2019, 33(7): 8221-8231. DOI: 10.1096/fj.201900071R.
21.Abete P, Della-Morte D, Gargiulo G, et al. Cognitive impairment and cardiovascular diseases in the elderly. A heart-brain continuum hypothesis[J]. Ageing Res Rev, 2014, 18: 41-52. DOI: 10.1016/j.arr.2014.07.003.
22.Priyadharsini RP. Animal models to evaluate anti-atherosclerotic drugs[J]. Fundam Clin Pharmacol, 2015, 29(4): 329-340. DOI: 10.1111/fcp.12130.
23.杨定法, 赵庆宇婧, 颜红娇, 等. 动脉粥样硬化实验动物模型及方法研究进展[J/OL]. 重庆医学, 2022. (2022-03-31) [2022-08-12]. [Yang DF, Zhao QYJ, Yan HJ, et al. Comparative study on experimental animal models and methods of atherosclerosis[J/OL]. Chongqing Medicine, 2022.] https://kns.cnki.net/kcms/detail/50.1097.R.20220330.1648.006.html.
24.药红梅, 吕吉元. 几种冠状动脉粥样硬化大鼠模型建立方法比较[J]. 中西医结合心脑血管病杂志, 2011, 9(4): 450-451. [Yao HM, Lyu JY. Comparison of several methods for establishing rat models of coronary atherosclerosis[J]. Chinese Journal of Integrative Medicine on Cardio/Cerebrovascular Disease, 2011, 9(4): 450-451.] DOI: 10.3969/j.issn.1672-1349.2011.04.039.
25.Smith DA. In adults without CVD, the MESA score, including coronary artery calcium, predicted 10-y risk for CHD events[J]. Ann Intern Med, 2016, 164(6): JC35. DOI: 10.7326/ACPJC-2016-164-6-035.
26.卢令慧, 王景, 曹愿, 等. 冠心病复合高血脂状态病证结合动物模型的建立与评价[J]. 中华中医药杂志, 2016, 31(5): 1816-1821. [Lu LH, Wang J, Cao Y, et al. Establishment and evaluation of disease and syndrome inte-grated animal model on coronary heart disease complicated with hyperlipemia[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2016, 31(5): 1816-1821.] DOI: CNKI:SUN:BXYY.0.2016-05-063.
27.Pendse AA, Arbones-Mainar JM, Johnson LA, et al. Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond[J]. J Lipid Res, 2009, 50 Suppl: S178-S182. DOI: 10.1194/jlr.R800070-JLR200.
28.Getz GS, Reardon CA. ApoE knockout and knockin mice: the history of their contribution to the un-derstanding of atherogenesis[J]. J Lipid Res, 2016, 57(5): 758-766. DOI: 10.1194/jlr.R067249.
29.Poznyak AV, Silaeva YY, Orekhov AN, et al. Animal models of human atherosclerosis: current pro-gress[J]. Braz J Med Biol Res, 2020, 53(6): e9557. DOI: 10.1590/1414-431x20209557.
30.Li Y, G Zhang C, Wang XH, et al. Progression of atherosclerosis in ApoE-knockout mice fed on a high-fat diet[J]. Eur Rev Med Pharmacol Sci, 2016, 20(18): 3863-3867. https://pubmed.ncbi.nlm.nih.gov/27735029/.
31.Sun LL, Duan MJ, Ma JC, et al. Myocardial infarction-induced hippocampal microtubule damage by cardiac originating microRNA-1 in mice[J]. J Mol Cell Cardiol, 2018, 120: 12-27. DOI: 10.1016/j.yjmcc.2018.05.009.
32.Ma JC, Duan MJ, Li KX, et al. Knockdown of microRNA-1 in the hippocampus ameliorates myocardial infarction induced impairment of long-term potentiation[J]. Cell Physiol Biochem, 2018, 50(4): 1601-1616. DOI: 10.1159/000494657.
33.Williams AR, Hatzistergos KE, Addicott B, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction[J]. Circulation, 2013, 127(2): 213-223. DOI: 10.1161/CIRCULATIONAHA.112.131110.
34.李贻奎, 赵乐, 何萍, 等. 提高结扎冠状动脉在体大鼠心肌梗死模型制作速度和质量的实验研究[J]. 中国中西医结合杂志, 2012, 32(7): 948-950. [Li YK, Zhao L, He P, et al. Study on improving the speed and quality of making rat myocardial infarction model by coronary artery ligation[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2012, 32(7): 948-950.] DOI: 10.7661/CJIM.2012.7.948.
35.张凯, 谢世阳, 王幼平, 等. 冠脉结扎法建立大鼠急性心肌梗死模型方法的探讨[J]. 中国中医急症, 2014, 24(8): 1397-1399. [Zhang K, Xie SY,Wang YP, et al. Evaluation of rat model of myocardial infarction induced by ligation of coronary artery[J]. Journal of Emergency in Traditional Chinese Medicine, 2014, 24(8): 1397-1399.] DOI: 10.3969/j.issn.1004-745X.2014.08.001.
36.Hong X, Bu L, Wang Y, et al. Increases in the risk of cognitive impairment and alterations of cerebral beta-amyloid metabolism in mouse model of heart failure[J]. PLoS One, 2013, 8(5): e63829. DOI: 10.1371/journal.pone. 0063829.
37.田欢, 支文冰, 李晔, 等. 三益丹对大鼠心肌缺血的改善作用[J]. 中成药, 2020, 42(3): 598-603. [Tian H, Zhi WB, Li Y, et al. Effects of Sanyidan on myocardial ischemia in rats[J]. Chinese Traditional Patent Medicine, 2020, 42(3): 598-603.] DOI: 10.3969/j.issn.1001-1528.2020.03.010.
38.Harjola VP, Mullens W, Banaszewski M, et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2017, 19(7): 821-836. DOI: 10.1002/ejhf.872.
39.Nichtova Z, Novotova M, Kralova E, et al. Morphological and functional characteristics of models of experimental myocardial injury induced by isoproterenol[J]. Gen Physiol Biophys, 2012, 31(2): 141-151. DOI: 10.4149/gpb_2012_015.
40.梁娟, 刘越, 尹新华. 异丙肾上腺素所致心肌损伤动物模型的研究进展[J]. 中国实验动物学报, 2019, 27(1): 110-114. [Liang J, Liu Y, Yin XH. Research progress of animal models of myocardial injury induced byisopro-terenol[J]. Acta Laboratorium Animalis Scientia Sinica, 2019, 27(1): 110-114.] DOI: 10.3969/j.issn.1005-4847.2019.01.018.
41.Meeran M, Azimullah S, Adeghate E, et al. Nootkatone attenuates myocardial oxidative damage, in-flammation, and apoptosis in isoproterenol-induced myocardial infarction in rats[J]. Phytomedicine, 2021, 84: 153405. DOI: 10.1016/j.phymed.2020.153405.
42.Chen Y, Peng L, Shi S, et al. Boeravinone B alleviates gut dysbiosis during myocardial infarc-tion-induced cardiotoxicity in rats[J]. J Cell Mol Med, 2021, 25(13): 6403-6416. DOI: 10.1111/jcmm.16620.
43.Hu Y, Liu X, Zhang T, et al. Behavioral and biochemical effects of KXS on postmyocardial infarction de-pression[J]. Front Pharmacol, 2020, 11: 561817. DOI: 10.3389/fphar. 2020.561817.
44.Tóth K, Oroszi T, van der Zee EA, et al. Effects of exercise training on behavior and brain function after high dose isoproterenol-induced cardiac damage[J]. Sci Rep, 2021, 11(1): 23576. DOI: 10.1038/s41598-021-03107-z.
45.Cleal M, Fontana BD, Ranson DC, et al. The Free-movement pattern Y-maze: a cross-species measure of working memory and executive function[J]. Behav Res Methods, 2021, 53(2): 536-557. DOI: 10.3758/s13428-020-01452-x.
46.Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzhei-mer's disease model mice[J]. J Vis Exp, 2011, (53): 2920. DOI: 10.3791/2920.
47.王玉. 针药并举对因动脉硬化引发轻度认知障碍小鼠模型的作用机制研究[D]. 沈阳: 辽宁中医药大学, 2019. [Wang Y. Study on the mechanism of acupuncture combined with medicine on mice model of mild cognitive impairment caused by atherosclerosis[D]. Shenyang: Liaoning University of Traditional Chinese Medi-cine, 2019.]
48.Ravindran S, Gopalakrishnan S, Kurian GA. Beneficial effect of sodium thiosulfate extends beyond my-ocardial tissue in isoproterenol model of infarction: Implication for nootropic effects[J]. J Biochem Mol Toxicol, 2020, 34(12): e22606. DOI: 10.1002/jbt.22606.
49.Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for assessment of spatial working and reference memory in mice[J]. Methods Mol Biol, 2019, 1916: 105-111. DOI: 10.1007/978-1-4939-8994-2_10.
50.刘蓓蓓. 动脉粥样硬化诱发的海马代谢异常影响突触可塑相关蛋白表达的机制及运动的调节作用[D]. 上海: 上海体育学院, 2021. [Liu BB. The mechanisms of metabolic changes in the hippocampus of atherosclerostic rat affecting synaptic plasticity associated proteins expression and regulation of running exercise[D]. Shanghai: Shanghai University of Sport, 2021.]
51.Ito K, Hirooka Y, Sunagawa K. Brain sigma-1 receptor stimulation improves mental disorder and car-diac function in mice with myocardial infarction[J]. J Cardiovasc Pharmacol, 2013, 62(2): 222-228. DOI: 10.1097/FJC.0b013e3182970b15.
52.Loureiro M, Lecourtier L, Engeln M, et al. The ventral hippocampus is necessary for expressing a spa-tial memory[J]. Brain Struct Funct, 2012, 217(1): 93-106. DOI: 10.1007/s00429-011-0332-y.
53.Bahník Š, Stuchlík A. Temporal and spatial strategies in an active place avoidance task on carousel: a study of effects of stability of arena rotation speed in rats[J]. PeerJ, 2015, 3: e1257. DOI: 10.7717/peerj.1257.
54.Atucha E, Roozendaal B. The inhibitory avoidance discrimination task to investigate accuracy of memory[J]. Front Behav Neurosci, 2015, 9: 60. DOI: 10.3389/fnbeh. 2015.00060.
55.Ma JC, Duan MJ, Li KX, et al. Knockdown of MicroRNA-1 in the hippocampus ameliorates myocardial infarction induced impairment of long-term potentiation[J]. Cell Physiol Biochem, 2018, 50(4): 1601-1616. DOI: 10.1159/000494657.
56.Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its mod-ifications[J]. Cogn Process, 2012, 13(2): 93-110. DOI: 10.1007/s10339-011-0430-z.
57.Hovens IB, van Leeuwen BL, Mariani MA, et al. Postoperative cognitive dysfunction and neuroinflam-mation; Cardiac surgery and abdominal surgery are not the same[J]. Brain Behav Immun, 2016, 54: 178-193. DOI: 10.1016/j.bbi.2016.02.003.
58.Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for alzheimer's disease[J]. Acta Neuropathol, 2016, 131(5): 659-685. DOI: 10.1007/s00401-016-1571-z.
59.Bereczki E, Bernat G, Csont T, et al. Overexpression of human apolipoprotein B-100 induces severe neurodegeneration in transgenic mice[J]. J Proteome Res, 2008, 7(6): 2246-2252. DOI: 10.1021/pr7006329.
60.Yuan S, Zhang X, Bo Y, et al. The effects of electroacupuncture treatment on the postoperative cogni-tive function in aged rats with acute myocardial ischemia-reperfusion[J]. Brain Res, 2014, 1593: 19-29. DOI: 10.1016/j.brainres.2014.10.005.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20242963
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20242412
-
An analysis of disease burden and risk factors of chronic kidney disease in China from 1990 to 2021
Sep. 30, 20242272
-
Construction and clinical teaching application of virtual patient system: based on artificial intelligence LLM technology
Jul. 30, 20241814
-
Characteristics of lower limb surface electromyography in patients with knee osteoarthritis and progress in their exercise rehabilitation
Aug. 31, 20241780
-
Analysis of the disease burden of neonatal encephalopathy due to birth asphyxia and trauma in China from 1990 to 2019
Aug. 31, 20241683
-
Research progress on the role and treatment of CD24 in the tumor microenvironment
Aug. 31, 20241602
-
Risk factors and prediction model construction for malnutrition in long-term bedridden elderly patients
Aug. 31, 20241581