With the emergence and spread of SARS-CoV-2, COVID-19 has become a severe threat to global public health. Based on the genome structure and the life cycle of SARSCoV-2, and its epidemiology, pathogenesis, diagnosis and treatment, this brief review aims to provide clues for the latest research on SARS-CoV-2 and COVID-19 induced pneumonia.
HomeArticlesVol 31,2021 No.3Detail
Research progress of SARS-CoV-2 and COVID-19
Published on Jun. 24, 2021Total Views: 5871 timesTotal Downloads: 3040 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17(3): 181-192. DOI: 10.1038/s41579-018-0118-9.
2. Gorse GJ, Donovan MM, Patel GB. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnesses[J]. J Med Virol, 2020, 92(5): 512-517.DOI: 10.1002/jmv.25715.
3. Killerby ME, Biggs HM, Haynes A, et al. Human coronavirus circulation in the United States 2014-2017[J]. J Clin Virol, 2018, 101: 52-56. DOI: 10.1016/j.jcv. 2018.01.019.
4. Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV--a target for vaccine and therapeutic devel-opment[J]. Nat Rev Microbiol, 2009, 7(3): 226-236. DOI: 10.1038/nrmicro2090.
5. Chafekar A, Fielding BC. MERS-CoV: understanding the latest human coronavirus threat[J]. Viruses, 2018, 10(2): 93. DOI: 10.3390/v10020093.
6. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273. DOI: 10.1038/s415 86-020-2012-7.
7. Yu WB, Tang GD, Zhang L, et al. Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2 / HCoV-19) using whole genomic data[J]. Zool Res, 2020, 41(3): 247-257. DOI: 10.24272/j.issn.2095-8137.2020.022.
8. Naqvi AA, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(10): 165878. DOI: 10.1016/j.bbadis.2020.165878.
9. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: impli-cations for virus origins and receptor binding[J]. Lancet, 2020, 395(10224): 565-574. DOI: 10.1016/S0140-6736(20)302 51-8.
10. Wu F, Zhao S, Yu B, et al. Author correction: a new coronavirus associated with human respiratory disease in China[J]. Nature, 2020, 580(7803): E7. DOI: 10.1038/s41586-020-2202-3.
11. Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerg Microbes Infect, 2020, 9(1): 221-236.DOI: 10.1080/22221751.2020.1719902.
12. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e278. DOI: 10.1016/j.cell.2020. 02.052.
13. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.e286. DOI: 10.1016/j.cell. 2020.02.058.
14. Shereen MA, Khan S, Kazmi A, et al. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses[J]. J Adv Res, 2020, 24: 91-98. DOI: 10.1016/j.jare.2020.03.005.
15. Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods[J]. Acta Pharm Sin B, 2020, 10(5): 766-788. DOI: 10.1016/j.apsb.2020.02.008.
16. Machitani M, Yasukawa M, Nakashima J, et al. RNA-dependent RNA polymerase, RdRP, a promising therapeutic target for cancer and potentially COVID-19[J]. Cancer Sci, 2020, 111(11): 3976-3984. DOI: 10.1111/cas.14618.
17. Kim D, Lee JY, Yang JS, et al. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181(4): 914-921.e910. DOI: 10.1016/j.cell.2020.04.011.
18. Davidson AD, Williamson MK, Lewis S, et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein[J]. Genome Med, 2020, 12(1): 68. DOI: 10.1186/s13073-020-00763-0.
19. Khedkar PH, Patzak A. SARS-CoV-2: What do we know so far?[J]. Arch Iran Med, 2020, 229(2): e13470. DOI: 10.34172/aim.2020.47.
20. Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus[J]. Am J Respir Cell Mol Biol, 2013, 48(6): 742-748. DOI: 10.1165/rcmb.2012-0339OC.
21. Pons S, Arnaud M, Loiselle M, et al. Immune consequences of endothelial cells' activation and dysfunction during sepsis[J]. Crit Care Clin, 2020, 36(2): 401-413. DOI: 10.1016/j.ccc.2019.12.001.
22. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies[J]. J Biol Regul Homeost Agents, 2020, 34(2): 327-331. DOI: 10.23812/CONTI-E.
23. Song P, Li W, Xie J, et al. Cytokine storm induced by SARS-CoV-2[J]. Clin Chim Acta, 2020, 509: 280-287. DOI: 10.1016/j.cca.2020.06.017.
24. Guihot A, Litvinova E, Autran B, et al. Cell-mediated immune responses to COVID-19 infection[J]. Front Immunol, 2020, 11: 1662. DOI: 10.3389/fimmu.2020. 01662.
25. Mangalmurti N, Hunter CA. Cytokine storms: understanding COVID-19[J]. Immunity, 2020, 53(1): 19-25. DOI: 10.1016/j.immuni.2020.06.017.
26. Pons S, Fodil S, Azoulay E, et al. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection[J]. Crit Care, 2020, 24(1): 353. DOI: 10.1186/s13054-020-03062-7.
27. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immuno-suppression[J]. Lancet, 2020, 395(10229): 1033-1034. DOI: 10.1016/S0140-6736(20)30628-0.
28. Chakraborty C, Sharma AR, Bhattacharya M, et al. COVID-19: consider IL-6 receptor antagonist for the therapy of cytokine storm syndrome in SARS-CoV-2 infected patients[J]. J Med Virol, 2020, 92(11):2260-2262. DOI: 10.1002/jmv.26078.
29. Coomes EA, Haghbayan H. Interleukin-6 in Covid-19: a systematic review and meta-analysis[J]. Rev Med Virol, 2020, 30(6): 1-9. DOI: 10.1002/rmv.2141.
30. Didangelos A. COVID-19 hyperinflammation: what about neutrophils?[J]. mSphere, 2020, 5(3): e00367-20. DOI: 10.1128/mSphere.00367-20.
31. Stilhano RS, Costa AJ, Nishino MS, et al. SARS-CoV-2 and the possible connection to ERs, ACE2, and RAGE: Focus on susceptibility factors[J]. FASEB J, 2020, 34(11): 14103-14119. DOI: 10.1096/fj.202001394RR.
32. Conti B, Tabarean I, Andrei C, et al. Cytokines and fever[J]. Front Biosci, 2004, 9: 1433-1449. DOI: 10.2741/1341.
33. Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and Immunotherapeutics[J]. Signal Transduct Target Ther, 2020, 5(1): 128. DOI: 10.1038/s41392-020-00243-2.
34. Aid M, Busman-Sahay K, Vidal SJ, et al. Vascular disease and thrombosis in SARS-CoV-2-Infected rhesus macaques[J]. Cell, 2020, 183(5): 1354-1366.e13. DOI: 10.1016/j.cell.2020.10.005.
35. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19[J]. Science, 2020, 370(6515): eabd4570. DOI: 10.1126/science.abd4570.
36. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19[J]. Science, 2020, 370(6515): eabd4585. DOI: 10.1126/science.abd4585.
37. Banerjee AK, Blanco MR, Bruce EA, et al. SARS-CoV-2 disrupts splicing, translation, and protein traf-ficking to suppress host defenses[J]. Cell, 2020, 183(5): 1325-1339.e21. DOI: 10.1016/j.cell.2020.10.004.
38. Meselson M. Droplets and aerosols in the transmission of SARS-CoV-2[J]. N Engl J Med, 2020, 382(21): 2063. DOI: 10.1056/NEJMc2009324.
39. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples[J]. Lancet Gastroenterol Hepatol, 2020, 5(5): 434-435. DOI: 10. 1016/S2468-1253(20)30083-2.
40. Prather KA, Marr LC, Schooley RT, et al. Airborne transmission of SARS-CoV-2[J]. Science, 2020, 370(6514): 303-304. DOI: 10.1126/science.abf0521.
41. Salzberger B, Buder F, Lampl B, et al. Epidemiology of SARS-CoV-2[J]. Infection, 2020.DOI: 10.1007/s15010-020-01531-3.
42. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. N Engl J Med, 2020, 382(16): 1564-1567. DOI: 10.1056/NEJMc2004973.
43. Grubaugh ND, Hanage WP, Rasmussen AL. Making sense of mutation: what D614G means for the COVID-19 Pandemic Remains Unclear[J]. Cell, 2020, 182(4): 794-795. DOI: 10.1016/j.cell.2020.06.040.
44. Hou YJ, Chiba S, Halfmann P, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo[J]. Science, 2020, 370(6523): 1464-1468. DOI: 10.1126/science.abe8499.
45. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection : a narrative review[J]. Ann Intern Med, 2020, 173(5): 362-367. DOI: 10.7326/M20-3012.
46. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study[J]. BMJ, 2020, 368: m1091. DOI: 10.11 36/bmj.m1091.
47. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis[J]. Int J Infect Dis , 2020, 94: 91-95. DOI: 10.1016/j.ijid.2020.03.017.
48. Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): a literature review[J]. J Infect Public Health, 2020, 13(5): 667-673. DOI: 10.1016/j.jiph.2020.03.019.
49. Helmy YA, Fawzy M, Elaswad A, et al. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control[J]. J Clin Med, 2020, 9(4): 1225. DOI: 10.3390/jcm9041225.
50. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study[J]. Lancet, 2020, 395(10229): 1054-1062. DOI: 10.1016/S0140-6736(20)30566-3.
51. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study[J]. Lancet, 2021, 397(10270): 220-232. DOI: 10.1016/S0140-6736(20)32656-8.
52. Lin L, Lu L, Cao W, et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia[J]. Emerg Microbes Infect, 2020, 9(1): 727-732. DOI: 10.1080/22221751.2020.1746199.
53. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany[J]. N Engl J Med, 2020, 382(10): 970-971. DOI: 10.1056/NEJMc2001468.
54. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - Final report[J]. N Engl J Med 2020, 383(19): 1813-1826. DOI: 10.1056/NEJMoa 2007764.
55. Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials[J]. Int J Mol Sci, 2020, 21(7): 2657. DOI: 10.3390/ijms21072657.
56. Group RC, Horby P, Mafham M, et al. Effect of hydroxychloroquine in hospitalized patients with Covid-19[J]. N Engl J Med, 2020, 383(21): 2030-2040.DOI: 10.1056/NEJMoa2022926.
57. Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for covid-19: living systematic review and network meta-analysis[J]. BMJ, 2020, 370: m2980. DOI: 10.1136/bmj.m2980.
58. Pinto D, Park YJ, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody[J]. Nature, 2020, 583(7815): 290-295. DOI: 10.1038/s41586-020-2349-y.
59. Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection[J]. Nat Commun, 2020, 11(1): 2251. DOI: 10.1038/s41467-020-16256-y.
60. Lv Z, Deng YQ, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody[J]. Science, 2020, 369(6510): 1505-1509. DOI: 10.1126/science.abc5881.
61. Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' b cells[J]. Cell, 2020, 182(1): 73-84.e16. DOI: 10.1016/j.cell. 2020.05.025.
62. Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2[J]. Nature, 2020, 584(7819): 120-124. DOI: 10.1038/s41586-020-2381-y.
63. Baum A, Ajithdoss D, Copin R, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters[J]. Science, 2020, 370(6520): 1110-1115. DOI: 10.1126/science.abe2402.
64. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine[J]. N Engl J Med, 2020, 383(27): 2603-2615. DOI: 10.1056/NEJMoa2034577.
65. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - preliminary re-port[J]. N Engl J Med, 2020, 383(20): 1920-1931. DOI: 10.1056/NEJMoa2022483.
66. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial[J]. Lancet, 2020, 396(10249): 467-478. DOI: 10.1016/S0140-6736(20)31604-4.
67. Wadman M. Public needs to prep for vaccine side effects[J]. Science, 2020, 370(6520): 1022. DOI: 10.1126/science.370.6520.1022.
68. Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, place-bo-controlled, phase 2 trial[J]. Lancet, 2020, 396(10249): 479-488. DOI: 10.1016/S0140-6736(20)31605-6.
69. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis, 2020, 21(2): 181-192. DOI: 10.1016/S1473-3099(20)30843-4.
70. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial[J]. Lancet, 2020, 395(10240): 1845-1854. DOI: 10.1016/S0140-6736(20)31208-3.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20243014
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20242498
-
An analysis of disease burden and risk factors of chronic kidney disease in China from 1990 to 2021
Sep. 30, 20242400
-
Construction and clinical teaching application of virtual patient system: based on artificial intelligence LLM technology
Jul. 30, 20241861
-
Characteristics of lower limb surface electromyography in patients with knee osteoarthritis and progress in their exercise rehabilitation
Aug. 31, 20241852
-
Analysis of the disease burden of neonatal encephalopathy due to birth asphyxia and trauma in China from 1990 to 2019
Aug. 31, 20241737
-
Research progress on the role and treatment of CD24 in the tumor microenvironment
Aug. 31, 20241664
-
Risk factors and prediction model construction for malnutrition in long-term bedridden elderly patients
Aug. 31, 20241633