Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress of fusion gene in bladder cancer

Published on Feb. 20, 2021Total Views: 4882 timesTotal Downloads: 2605 timesDownloadMobile

Author: Hao SUN 1, 2 Jun-Wen XIAO 1, 2 Kun HU 3 Gang-Lin SU 4 Yu-Chen LIU 5

Affiliation: 1. Department of Urology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong Province, China 2. Shenzhen Key Laboratory of Urogenital System Tumor Research, Shenzhen 518000, Guangdong Province, China 3. Department of Urology, School of Clinical Medicine, Shenzhen Second People's Hospital, Anhui Medical Univer-sity , Shenzhen 518000, Guangdong Province, China 4. Department of Urology, School of Clinical Medicine, Shenzhen Second People's Hospital of Shantou University, Shenzhen 518000, Guangdong Province, China 5. Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong Province, China

Keywords: Fusion gene Tumor Bladder cancer

DOI: 10.12173/j.issn.1004-5511.2021.01.06

Reference: Sun H, Xiao JW, Hu K, Su GL, Liu YC. Research progress of fusion gene in bladder cancer[J]. Yixue Xinzhi Zazhi, 2021, 31(1): 42-50. DOI: 10.12173/j.issn.1004-5511.2021.01.06.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

More and more fusion genes have been found in urinary system tumors, especially bladder cancer. The purpose of this paper is to review the research achievements of fusion gene, summarize the latest research progress of fusion gene in bladder cancer, and discuss the possible development direction of fusion gene in bladder cancer research in the future.

Full-text
Please download the PDF version to read the full text: download
References

1. Stam K, Heisterkamp N, Grosveld G, et al. Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome[J]. N Engl J Med, 1985, 313(23): 1429-1433.  DOI: 10.1056/NEJM198512053132301.

2. Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia[J]. Nature, 1985, 315(6020): 550-554. DOI: 10.1038/315550a0.

3. Zech L, Haglund U, Nilsson K, et al. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas[J]. Int J Cancer, 1976, 17(1): 47-56. DOI: 10.1002/ijc.2910170108.

4. Nowell PC. The minute chromosome (Phl) in chronic granulocytic leukemia[J]. Blut, 1962, 8: 65-66. DOI: 10. 1007/BF01630378.

5. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining[J]. Nature, 1973, 243(5405): 290-293.  DOI: 10.1038/243290a0. 

6. Rowley JD. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia[J]. Ann Genet, 1973, 16(2): 109-112. DOI: 10.1046/j.1365-3083. 2000.00671.x.

7. Berger R, Bernheim A, Weh HJ, et al. A new translocation in Burkitt's tumor cells[J]. Hum Genet, 1979, 53(1): 111-112. DOI: 10.1007/BF00289460.

8. Miyoshi I, Hiraki S, Kimura I, et al. 2/8 translocation in a Japanese Burkitt's lymphoma[J]. Experientia, 1979, 35(6): 742-743.  DOI: 10.1007/BF01968217. 

9. Oshimura M, Freeman AI, Sandberg AA. Chromosomes and causation of human cancer and leukemia. XXVI. Binding studies in acute lymphoblastic leukemia (ALL)[J]. Cancer, 1977, 40(3): 1161-1172. DOI: 10.1002/1097- 0142(197709)40:3<1161::aid-cncr2820400 327>3.0.co; 2-2.

10.  Rowley JD, Golomb HM, Dougherty C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia[J]. Lancet, 1977, 1(8010): 549-550.  DOI: 10.1016/s0140-6736(77)91415-5. 

11.  Fukuhara S, Rowley JD, Variakojis D, et al. Chromosome abnormalities in poorly differentiated lymphocytic lymphoma[J]. Cancer Res, 1979, 39(8): 3119-3128. DOI: 10.1016/S0304-3835(79)80095-6.

12.  Seidal T, Mark J, Hagmar B, et al. Alveolar rhabdomyosarcoma: a cytogenetic and correlated cytological and histological study[J]. Acta pathologica, microbiologica, et immunologica Scandinavica Section A, Pathology, 1982, 90(5): 345-354. DOI: 10.1111/j.1699-0463.1982.tb00 105_90a.x.

13.  Aurias A, Rimbaut C, Buffe D. Chromosomal translocations in Ewing's sarcoma[J]. N Engl J Med, 1983, 309(8): 496-498.

14.  Jong B, Molenaar IM, Leeuw JA, et al. Cytogenetics of a renal adenocarcinoma in a 2-year-old child[J]. Cancer Genet Cytogenet, 1986, 21(2): 165-169. DOI: 10.1016/0165-4608(86)90042-7. 

15.  Carruthers SG. Severe coughing during captopril and enalapril therapy[J]. CMAJ , 1986, 135(3): 217-218.

16.  Turc-Carel C, Dal Cin P, Rao U, et al. Cytogenetic studies of adipose tissue tumors. I. A benign lipoma with reciprocal translocation t(3;12)(q28;q14)[J]. Cancer Genet Cytogenet, 1986, 23(4): 283-289. DOI: 10.1016/0165-4608(86)90010-5.

17.  Wachtel M, Dettling M, Koscielniak E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1[J]. Cancer research, 2004, 64(16): 5539-5545. DOI: 10.1158/0008-5472.CAN-04-0844.

18.  Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer[J]. Science, 2005, 310(5748): 644-648.  DOI: 10.1126/science.1117679. 

19.  Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer[J]. Nature, 2007, 448(7153): 561-566. DOI: 10.1038/nature05945.

20.  Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer[J]. Cell, 2007, 131(6): 1190-1203. DOI: 10.1016/j.cell.2007.11.025.

21.  Wang L, Motoi T, Khanin R, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data[J]. Genes Chromosomes Cancer, 2012, 51(2): 127-139.  DOI: 10.1002/gcc.20937. 

22.  Bernard O, Lecointe N, Jonveaux P, et al. Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5' part of the tal-1 gene[J]. Oncogene, 1991, 6(8): 1477-1488.

23.  Barr FG, Nauta LE, Davis RJ, et al. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma[J]. Hum Mol Genet, 1996, 5(1): 15-21. DOI: 10.1093/hmg/5.1.15.

24.  Simon MP, Pedeutour F, Sirvent N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma[J]. Nat Genet, 1997, 15(1): 95-98.  DOI: 10.1038/ng0197-95. 

25.  Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia[J]. Blood, 2000, 95(3): 738-743. DOI: 10.1007/s002770050019.

26.  Gelsi-Boyer V, Trouplin V, Adélaïde J, et al. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes[J]. BMC Cancer, 2008, 8: 299. DOI: 10.1186/1471-2407-8-299.

27.  Van Vlierberghe P, van Grotel M, Tchinda J, et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia[J]. Blood, 2008, 111(9): 4668-4680. DOI: 10.1182/blood-2007-09-111872.

28.  Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia[J]. Nat Genet, 2009, 41(11): 1243-1246. DOI: 10.1038/ng.469. 

29.  Santo EE, Ebus ME, Koster J, et al. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma[J]. Oncogene, 2012, 31(12): 1571-1581.  DOI: 10.1038/onc.2011.344. 

30.  Płaszczyca A, Nilsson J, Magnusson L, et al. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma[J]. Int J Biochem Cell Biol, 2014, 53: 475-481. DOI: 10.1016/j.biocel.2014.03.027.

31.  Campbell PJ, Stephens PJ, Pleasance ED, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing[J]. Nat Genet, 2008, 40(6): 722-729. DOI: 10.1038/ng.128.

32.  Stephens PJ, McBride DJ, Lin ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes[J]. Nature, 2009, 462(7276): 1005-1010. DOI: 10.1038/nature08645.

33.  Stephens PJ, McBride DJ, Lin ML, et al. Transcriptome sequencing to detect gene fusions in cancer[J]. Nature, 2009, 458(7234): 97-101. DOI: 10.1038/nature07638.

34.  Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487(7407): 330-337. DOI: 10.1038/nature 11252.

35.  Mertens F, Johansson B, Fioretos T, et al. The emerging complexity of gene fusions in cancer[J]. Nature reviews Cancer, 2015, 15(6): 371-381. DOI: 10.1038/nrc3947.

36.  Happell B, Platania-Phung C, Scott D. Placing physical activity in mental health care: a leadership role for mental health nurses[J]. Int J Ment Health Nurs, 2011, 20(5): 310-318. DOI: 10.1111/j.1447-0349.2010.00732.x. 

37.  Chmielecki J, Crago AM, Rosenberg M, et al. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors[J]. Nat Genet, 2013, 45(2): 131-132.  DOI: 10.1038/ng.2522. 

38.  Mohajeri A, Tayebwa J, Collin A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor[J]. Genes Chromosomes Cancer, 2013, 52(10): 873-886.  DOI: 10.1002/gcc.22083. 

39.  Cairns J. The origin of human cancers[J]. Nature, 1981, 289(5796): 353-357. DOI: 10.1038/289353a0. 

40.  Klein G. The role of gene dosage and genetic transpositions in carcinogenesis[J]. Nature, 1981, 294(5839): 313-318.  DOI: 10.1038/294313a0. 

41.  Leder P, Battey J, Lenoir G, et al. Translocations among antibody genes in human cancer[J]. Science, 1983, 222(4625): 765-771. DOI: 10.1126/science.6356357.

42.  Tsujimoto Y, Yunis J, Onorato-Showe L, et al. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation[J]. Science, 1984, 224(4656): 1403-1406. DOI: 10.1126/science.6610211. 

43.  JC G, TC M. The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene[J]. Blood, 1989, 73(8): 2081-2085. DOI: 10.1002/ajh.2830310216.

44.  Korsmeyer SJ. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes[J]. Annu Rev Immunol, 1992, 10: 785-807. DOI: 10.1146/annurev.iy.10.040192.004033.

45.  Mathieu-Mahul D, Sigaux F, Zhu C, et al. A t(8;14)(q24;q11) translocation in a T-cell leukemia (L1-ALL) with c-myc and TcR-alpha chain locus rearrangements[J]. Int J Cancer, 1986, 38(6): 835-840. DOI: 10.1002/ijc. 2910380609. 

46.  McKeithan TW, Shima EA, Le Beau MM, et al. Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3' side of MYC[J]. Proc Natl Acad Sci USA, 1986, 83(17): 6636-6640. DOI: 10. 1073/pnas.83.17.6636. 

47.  Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia[J]. J Clin Invest, 2012, 122(10): 3398-3406. DOI: 10.1172/JCI61269.

48.  Kamps MP, Murre C, Sun XH, et al. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL[J]. Cell, 1990, 60(4): 547-555.  DOI: 10.1016/0092-8674(90)90658-2.

49.  Nourse J, Mellentin JD, Galili N, et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor[J]. Cell, 1990, 60(4): 535-545.  DOI: 10.1016/0092-8674(90)90657-z. 

50.  Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation[J]. Nat Rev Cancer, 2007, 7(4): 233-245. DOI: 10.1038/nrc2091.

51.  Duro D, Bernard O, Della Valle V, et al. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type[J]. Cancer Res, 1996, 56(4): 848-854. DOI: 10.1002/(SICI)1097-0142(19960215)77:4<805::AID-CNCR29>3.0.CO;2-3.

52.  Terblanche AP, Opperman L, Nel CM, et al. Preliminary results of exposure measurements and health effects of the vaal triangle air pollution health study[J]. S Afr Med J, 1992, 81(11): 550-556.

53.  Coyaud E, Struski S, Prade N, et al. Wide diversity of PAX5 alterations in B-ALL: a groupe francophone de cytogenetique hematologique study[J]. Blood, 2010, 115(15): 3089-3097. DOI: 10.1182/blood- 2009-07-234 229. 

54.  Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. N Engl J Med, 2013, 368(22): 2059-2074. DOI: 10.1056/NEJMoa1301689.

55.  Büschges R, Weber RG, Actor B, et al. Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas[J]. Brain Pathol, 1999, 9(3): 435-442. DOI: 10.1111/j.1750-3639.1999.tb0 0532.x. 

56.  Bohlander SK. ETV6: a versatile player in leukemogenesis[J]. Semin Cancer Biol, 2005, 15(3): 162-174. DOI: 10.1016/j.semcancer.2005.01.008. 

57.  Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359-E386.  DOI: 10.1002/ijc.29210.

58.  Helsten T, Schwaederle M, Kurzrock R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications[J]. Cancer Metastasis Rev, 2015, 34(3): 479-496. DOI: 10.1007/s105 55-015-9579-8.

59.  Helsten T, Elkin S, Arthur E, et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing[J]. Clin Cancer Res, 2016, 22(1): 259-267.  DOI: 10.1158/1078-0432.CCR-14-3212. 

60.  Roskoski RJ. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder[J]. Pharmacol Res, 2020, 151: 104567. DOI: 10.1016/j.phrs. 2019.104567. 

61.  Chae YK, Ranganath K, Hammerman PS, et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application[J]. Oncotarget, 2017, 8(9): 16052-16074. DOI: 10.18632/on cotarget.14109. 

62.  Parker BC, Annala MJ, Cogdell DE, et al. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma[J]. J Clin Invest, 2013, 123(2): 855-865.  DOI: 10.1172/JCI67144. 

63.  Singh D, Chan JM, Zoppoli P, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma[J]. Science, 2012, 337(6099): 1231-1235. DOI: 10.1126/science. 1220834.

64.  Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer[J]. Hum Mol Genet, 2013, 22(4): 795-803. DOI: 10.1093/hmg/dds 486.

65.  Guo G, Sun X, Chen C, et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation[J]. Nat Genet, 2013, 45(12): 1459-1463. DOI: 10.1038/ng.2798.

66.  Roskoski RJ. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder[J]. Pharmacol Res, 2020, 151: 104567. DOI: 10.1016/j.phrs. 2019.104567.

67.  Kekeeva T, Tanas A, Kanygina A, et al. Novel fusion transcripts in bladder cancer identified by RNA-seq[J]. Cancer Lett, 2016, 374(2): 224-228.  DOI: 10.1016/j.can let.2016.02.010. 

68.  Zhu D, Singh S, Chen X, et al. The landscape of chimeric RNAs in bladder urothelial carcinoma[J]. Int J Biochem Cell Biol, 2019, 110: 50-58. DOI: 10.1016/j.biocel.2019.02.007.  

69.  Wang DG, Zhao MJ, Liu YQ, et al. Fiber-modified adenovirus-mediated suicide gene therapy can efficiently eliminate bladder cancer cells in vitro and in vivo[J]. Oncotarget, 2016, 7(44): 71710-71717. DOI: 10.18632/oncotarget.12324.

Hu. C, Jiang D, Wu M, et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of VEGFR2-targeted CD-TK-loaded cationic nanobubbles in the treatment of bladder cancer[J]. J Cancer Res Clin Oncol, 2020, 146(6): 1415-1426. DOI: 10.1007/s00432-020-03160-7.