Welcome to visit Zhongnan Medical Journal Press Series journal website!

Natural killer cell in the development and treatment of head and neck squamous cell carcinoma

Published on Feb. 20, 2021Total Views: 4856 timesTotal Downloads: 2767 timesDownloadMobile

Author: Lu-Ming WANG 1, 2, 3, 4, 5 Shang XIE 1, 2, 3, 4, 5

Affiliation: 1. Peking University School of Stomatology|Beijing 100081|China 2. Department of Oral and Maxillofacial Surgery|Peking University Hospital of Stomatology|Beijing 100081|China 3. National Clinical Research Center for Oral Diseases|Beijing 100081|China 4. National Engineering Laboratory for Digital and Material Technology of Stomatology|Beijing 100081|China 5. Beijing Key Laboratory of Digital Stomatology|Beijing 100081|China

Keywords: Nature killer cells Head and neck squamous cell carcinoma Immunotherapy

DOI: 10.12173/j.issn.1004-5511.2021.01.05

Reference: Wang LM, Xie S. Natural killer cell in the development and treatment of head and neck squamous cell carcinoma[J]. Yixue Xinzhi Zazhi, 2021, 31(1): 33-41. DOI: 10.12173/j.issn.1004-5511.2021.01.05.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors in the world. It has a high metastasis rate and a poor prognosis. HNSCC often brings severe facial deformitiesand dysfunctions such as eating and pronunciation to patients. Nature Killer cells (NK cells) are innate immune system effector cells that directly recognize and kill tumor cells. Studies have shown that NK cells activity are associated with the prognosis of HNSCC, and HNSCC developed with the reduction or inhibition of NK cells. Previous studies believe that natural killer cells can be reactivated to improve the curative effect of HNSCC, showing the potential of natural killer cells. This article reviews the application of natural killer cells in the development and treatment of HNSCC.

Full-text
Please download the PDF version to read the full text: download
References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.

2. Mandal R, Senbabaoglu Y, Desrichard A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications[J]. JCI Insight, 2016, 1(17): e89829. DOI: 10.1172/jci.insight.89829.

3. Biron CA. Activation and function of natural killer cell responses during viral infections[J]. Curr Opin Immunol, 1997, 9(1): 24-34. DOI: 10.1016/s0952-7915(97)80155-0.

4. Glas R, Franksson L, Une C, et al. Recruitment and activation of natural killer (NK) cells in vivo determined by the target cell phenotype. An adaptive component of NK cell-mediated responses[J]. J Exp Med, 2000, 191(1): 129-138. DOI: 10.1084/jem.191.1.129.

5. Penack O, Gentilini C, Fischer L, et al. CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets[J]. Leukemia, 2005, 19(5): 835-840. DOI: 10.1038/sj.leu.2403704.

6. Angelo LS, Banerjee PP, Monaco SL, et al. Practical NK cell phenotyping and variability in healthy adults[J]. Immunol Res, 2015, 62(3): 341-356. DOI: 10. 1007/s12026-015-8664-y.

7. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets[J]. Trends Immunol, 2001, 22(11): 633-640. DOI: 10.1016/s1471-4906 (01)02060-9.

8. Vivier E, Tomasello E, Baratin M, et al. Functions of natural killer cells[J]. Nat Immunol, 2008, 9(5): 503-510. DOI: 10.1038/ni1582.

9. Cichicki F, Schlums H, Theorell J, et al. Diversification and functional specialization of human NK cell subsets[J]. Curr Top Microbiol Immunol, 2016, 395: 63-94. DOI: 10.1007/82_2015_487.

10.  Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells[J]. Eur J Immunol, 2001, 31(10): 3121-3127. DOI: 10.1002/1521-4141 (2001010)31:10<3121::aid-immu3121>3.0.co;2-4.

11.  Fauriat C, Long EO, Ljunggren HG, et al. Regulation of human NK-cell cytokine and chemokine production by target cell recognition[J]. Blood, 2010, 115(11): 2167-2176. DOI: 10.1182/blood-2009-08-238469.

12.  Beziat V, Duffy D, Quoc SN, et al. CD56bright CD16+ NK cells: a functional intermediate stage of NK cell differentiation[J]. J Immunol, 2011, 186(12): 6753-6761. DOI: 10.4049/jimmunol.1100330.

13.  Michel T, Poli A, Cuapio A, et al. Human CD56bright NK cells: an update[J]. J Immunol, 2016, 196(7): 2923-2931. DOI: 10.4049/jimmunol.1502570.

14.  Weil S, Memmer S, Lechner A, et al. Natural killer group 2D ligand depletion reconstitutes natural killer cell immunosurveillance of head and neck squamous cell carcinoma[J]. Front Immunol, 2017, 8: 387. DOI: 10.3389/fimmu.2017.00387.

15.  Bose A, Chakraborty T, Chakraborty K, et al. Dysregulation in immune functions is reflected in tumor cell cytotoxicity by peripheral blood mononuclear cells from head and neck squamous cell carcinoma patients[J]. Cancer Immun, 2008, 8: 10. DOI: 10.1159/000132693.

16.  Schantz SP, Shillitoe EJ, Brown B, et al. Natural killer cell activity and head and neck cancer: a clinical assessment[J]. J Natl Cancer Inst, 1986, 77(4): 869-875. DOI: 10.1002/jso.2930330219. 

17.  Schantz SP, Ordonez NG. Quantitation of natural killer cell function and risk of metastatic poorly differentiated head and neck cancer[J]. Nat Immun Cell Growth Regul, 1991, 10(5): 278-288. 

18.  Schantz SP, Savage HE, Racz T, et al. Natural killer cells and metastases from pharyngeal carcinoma[J]. Am J Surg, 1989, 158(4): 361-366. DOI: 10.1016/0002-9610(89)90134-7.

19.  Wagner S, Wittekindt C, Reuschenbach M, et al. CD56-positive lymphocyte infiltration in relation to human papillomavirus association and prognostic significance in oropharyngeal squamous cell carcinoma[J]. Int J Cancer, 2016, 138(9): 2263-2273. DOI: 10.1002/ijc.29962.

20.  Fang J, Li X, Ma D, et al. Prognostic significance of tumor infiltrating immune cells in oral squamous cell carcinoma[J]. BMC Cancer, 2017, 17(1): 375. DOI: 10.1186/s12885-017-3317-2.

21.  Karpathiou G, Casteillo F, Giroult JB, et al. Prognostic impact of immune microenvironment in laryngeal and pharyngeal squamous cell carcinoma: Immune cell subtypes, immuno-suppressive pathways and clinicopathologic characteristics[J]. Oncotarget, 2017, 8(12): 19310-19322. DOI: 10.18632/oncotarget.14242.

22.  Concha BF, Kansy B, Moskovitz J, et al. PD-L1 Mediates Dysfunction in Activated PD-1(+) NK Cells in Head and Neck Cancer Patients[J]. Cancer Immunol Res, 2018, 6(12): 1548-1560. DOI: 10.1158/2326-6066.CIR-18-0062.

23.  Wulff S, Pries R, Borngen K, et al. Decreased levels of circulating regulatory NK cells in patients with head and neck cancer throughout all tumor stages[J]. Anticancer Res, 2009, 29(8): 3053-3057. DOI: 10.1093/eurheartj/ 14.2.273.

24.  Accomando WP, Wiencke JK, Houseman EA, et al. Decreased NK cells in patients with head and neck cancer determined in archival DNA[J]. Clin Cancer Res, 2012, 18(22): 6147-6154. DOI: 10.1158/1078-0432.CCR-12-1008.

25.  Melioli G, Semino C, Margarino G, et al. Expansion of natural killer cells in patients with head and neck cancer: detection of "noninhibitory" (activating) killer Ig-like receptors on circulating natural killer cells[J]. Head Neck, 2003, 25(4): 297-305. DOI: 10.1002/hed.10198.

26.  Bauernhofer T, Kuss I, Henderson B, et al. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer [J]. Eur J Immunol, 2003, 33(1): 119-124. DOI: 10.1002/immu.200390014.

27.  Konjevic G, Jurisic V, Jovic V, et al. Investigation of NK cell function and their modulation in different malignancies [J]. Immunol Res, 2012, 52(1-2): 139-156. DOI: 10.1007/s12026-012-8285-7.

28.  Balázs K, Kis E, Badie C, et al. Radiotherapy-Induced changes in the systemic immune and inflammation parameters of head and neck cancer patients[J]. Cancers (Basel), 2019, 11(9): 1324. DOI: 10.3390/cancers1109 1324.

29.  Huang W, Fan Y, Cheng X, et al. A preliminary study on the effect of head and neck chemoradiotherapy on systematic immunity[J]. Dose Response, 2019, 17(4): 1559325819884186. DOI: 10.1177/1559325819884186.

30.  Wang N, Feng Y, Wang Q, et al. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells[J]. PLoS One, 2014, 9(2): e89991. DOI: 10.1371/journal.pone.0089991.

31.  Lucarini G, Zizzi A, Re M, et al. Prognostic implication of CEACAM1 expression in squamous cell carcinoma of the larynx: pilot study[J]. Head Neck, 2019, 41(6): 1615-1621. DOI: 10.1002/hed.25589.

32.  Tam K, Schoppy DW, Shin JH, et al. Assessing the impact of targeting CEACAM1 in head and neck squamous cell carcinoma[J]. Otolaryngol Head Neck Surg, 2018, 159(1): 76-84. DOI: 10.1177/0194599818756627.

33.  Ladányi A, Kapuvári B, Papp E, et al. Local immune parameters as potential predictive markers in head and neck squamous cell carcinoma patients receiving induction chemotherapy and cetuximab[J]. Head Neck, 2019, 41(5): 1237-1245. DOI: 10.1002/hed.25546.

34.  Ferris RL. Immunology and immunotherapy of head and neck cancer[J]. J Clin Oncol, 2015, 33(29): 3293-3304. DOI: 10.1200/JCO.2015.61.1509.

35.  Concha BF, Srivastava RM, Trivedi S, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNgamma that induce PD-L1 expression in head and neck cancer[J]. Cancer Res, 2016, 76(5): 1031-1043. DOI: 10.1158/0008-5472.CAN-15-2001.

36.  KlößS, Chambron N, Gardlowski T, et al. Increased sMICA and TGFbeta1 levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells[J]. Oncoimmunology, 2015, 4(11): e1055993. DOI: 10.1080/2162402X.2015.1055993.

37.  Wolf GT, Moyer JS, Kaplan MJ, et al. IRX-2 natural cytokine biologic for immunotherapy in patients with head and neck cancers[J]. Onco Targets Ther, 2018, 11: 3731-3746. DOI: 10.2147/OTT.S165411.

38.  顾小军, 王腾勇, 刘新庆, 等. Tim-3在口腔鳞癌患者外周血NK细胞的表达及意义[J]. 实用口腔医学杂志, 2016, 32(5): 692-695. DOI: 10.3969/j.issn.1001- 3733.2016.05.022. [Gu XJ, Wang TY, Liu XQ, et al. Expression and clinical significance of Tim-3 in peripheral blood natural killer cells of patients with oral squamous cell carcinoma[J]. Journal of Practical Stomatology, 2016, 32(5): 692-695.]

39.  Ludwig S, Floros T, Theodoraki MN, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16): 4843-4854. DOI: 10.1158/1078-0432.CCR-16-2819.

40.  Ashiru O, Boutet P, Fernández ML, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes [J]. Cancer Res, 2010, 70(2): 481-489. DOI: 10.1158/0008-5472.CAN-09-1688.

41.  Theodoraki MN, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018, 24(4): 896-905. DOI: 10.1158/1078-0432.CCR-17-2664.

42.  Bergmann C, Wild CA, Narwan M, et al. Human tumor-induced and naturally occurring Treg cells differentially affect NK cells activated by either IL-2 or target cells[J]. Eur J Immunol, 2011, 41(12): 3564-3573. DOI: 10.1002/eji.201141532.

43.  Pedroza-Pacheco I, Madrigal A, Saudemont A. Interaction between natural killer cells and regulatory T cells: perspectives for immunotherapy [J]. Cell Mol Immunol, 2013, 10(3): 222-229. DOI: 10.1038/cmi.2013.2.

44.  Bergmann C. Regulatory T cells and NK cells in cancer patients[J]. HNO, 2014, 62(6): 406-414. DOI: 10.1007/s00106-014-2874-9.

45.  Schwartz M, Zhang Y, Rosenblatt JD. B cell regulation of the anti-tumor response and role in carcinogenesis[J]. J Immunother Cancer, 2016, 4: 40. DOI: 10.1186/s40425-0 16-0145-x.

46.  Lee SC, Srivastava RM, López AA, et al. Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity[J]. Immunol Res, 2011, 50(2-3): 248-254. DOI: 10.1007/s12026-011-8231-0.

47.  Srivastava RM, Lee SC, Andrade Filho PA, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients [J]. Clin Cancer Res, 2013, 19(7): 1858-1872. DOI: 10.1158/1078-0432.CCR-12-2426.

48.  Baysal H, De Pauw I, Zaryouh H, et al. Cetuximab-induced natural killer cell cytotoxicity in head and neck squamous cell carcinoma cell lines: investigation of the role of cetuximab sensitivity and HPV status[J]. Br J Cancer, 2020, 123(5): 752-761. DOI: 10.1038/s41416-020-0934-3.

49.  Faden DL, Concha BF, Chakka AB, et al. Immunogenomic correlates of response to cetuximab monotherapy in head and neck squamous cell carcinoma [J]. Head Neck, 2019, 41(8): 2591-2601. DOI: 10.1002/hed.25726.

50.  Jie HB, Schuler PJ, Lee SC, et al. CTLA-4(+) Regulatory t cells increased in cetuximab-treated head and neck cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis[J]. Cancer Res, 2015, 75(11): 2200-2210. DOI: 10.1158/0008-5472.CAN-14-2788.

51.  Stephenson RM, Lim CM, Matthews M, et al. TLR8 stimulation enhances cetuximab-mediated natural killer cell lysis of head and neck cancer cells and dendritic cell cross-priming of EGFR-specific CD8+ T cells [J]. Cancer Immunol Immunother, 2013, 62(8): 1347-1357. DOI: 10.1007/s00262-013-1437-3.

52.  Bochen F, Balensiefer B, Körner S, et al. Vitamin D deficiency in head and neck cancer patients - prevalence, prognostic value and impact on immune function[J]. Oncoimmunology, 2018, 7(9): e1476817. DOI: 10.1080/2162402X.2018.1476817.

53.  Lu S, Concha BF, Shayan G, et al. STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV(+) status in head and neck cancer[J]. Oral Oncol, 2018, 78: 186-93. DOI: 10.1016/j.oraloncology.2018.01.019.

54.  Pinette A, McMichael E, Courtney NB, et al. An IL-15-based superagonist ALT-803 enhances the NK cell response to cetuximab-treated squamous cell carcinoma of the head and neck [J]. Cancer Immunol Immunother, 2019, 68(8): 1379-1389. DOI: 10.1007/s00262-019-02372-2.

55.  Margolin K, Morishima C, Velcheti V, et al. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors[J]. Clin Cancer Res, 2018, 24(22): 5552-5561. DOI: 10.1158/1078-0432.CCR-18-0945.

56.  McMichael EL, Benner B, Atwal LS, et al. A Phase I/II trial of cetuximab in combination with interleukin-12 administered to patients with unresectable primary or recurrent head and neck squamous cell carcinoma [J]. Clin Cancer Res, 2019, 25(16): 4955-4965. DOI: 10.1158/1078-0432.CCR-18-2108.

57.  Ahmed J, Chard LS, Yuan M, et al. A new oncolytic V accinia virus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery [J]. J Immunother Cancer, 2020, 8(1): e000415. DOI: 10.1136/jitc-2019-000415.

58.  Matsui M, Kishida T, Nakano H, et al. Interleukin-27 activates natural killer cells and suppresses NK-resistant head and neck squamous cell carcinoma through inducing antibody-dependent cellular cytotoxicity[J]. Cancer Res, 2009, 69(6): 2523-2530. DOI: 10.1158/0008-5472.CAN-08-2793.

59.  Whiteside TL, Letessier E, Hirabayashi H, et al. Evidence for local and systemic activation of immune cells by peritumoral injections of interleukin 2 in patients with advanced squamous cell carcinoma of the head and neck[J]. Cancer Res, 1993, 53(23): 5654-5662. DOI: 10. 1016/0165-4608(93)90031-G.

60.  Jochems C, Hodge JW, Fantini M, et al. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele[J]. Oncotarget, 2016, 7(52): 86359-86373. DOI: 10.18632/oncotarget. 13411.

61.  Fabian KP, Padget MR, Donahue RN, et al. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations [J]. J Immunother Cancer, 2020, 8(1): e000450. DOI: 10.1136/jitc-2019-000450.

62.  Park JE, Kim SE, Keam B, et al. Anti-tumor effects of NK cells and anti-PD-L1 antibody with antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines[J]. J Immunother Cancer, 2020, 8(2): e000873. DOI: 10.1136/jitc-2020-000873.

63.  Robbins Y, Greene S, Friedman J, et al. Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells[J]. Elife, 2020, 9: e54854. DOI: 10.7554/eLife. 54854.

64.  AndréP, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both t and NK cells[J]. Cell, 2018, 175(7): 1731-1743.e13. DOI: 10.1016/j.cell.2018.10.014.

65.  Kundu K, Ghosh S, Sarkar R, et al. Inhibition of the NKp44-PCNA immune checkpoint using a mAb to PCNA[J]. Cancer Immunol Res, 2019, 7(7): 1120-1134. DOI: 10. 1158/2326-6066.CIR-19-0023.

66.  Friedman J, Morisada M, Sun L, et al. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies[J]. J Immunother Cancer, 2018, 6(1): 59. DOI: 10.1186/s40 425-018-0374-2.

67.  Greene S, Robbins Y, Mydlarz WK, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models[J]. Clin Cancer Res, 2020, 26(6): 1420-1431. DOI: 10.1158/1078-0432.CCR-19-2625.

68.  Mazorra Z, Lavastida A, Concha-Benavente F, et al. Nimotuzumab induces NK cell activation, cytotoxicity, dendritic cell maturation and expansion of EGFR-specific t cells in head and neck cancer patients[J]. Front Pharmacol, 2017, 8: 382. DOI: 10.3389/fphar.2017. 00382.

69.  Crombet RT, Mestre FB, Mazorra HZ, et al. Nimotuzumab for patients with inoperable cancer of the head and neck [J]. Front Oncol, 2020, 10: 817. DOI: 10.3389/fonc.2020.00817.