Welcome to visit Zhongnan Medical Journal Press Series journal website!

Endothelial dysfunction is an early event in the pathophysiology of obesity

Published on Oct. 16, 2020Total Views: 6180 timesTotal Downloads: 2495 timesDownloadMobile

Author: Gui-Fen ZHANG Hua WANG *

Affiliation: Department of General Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: Obesity Adipose tissue Hypoxia Inflammation Endothelial dysfunction

DOI: 10.12173/j.issn.1004-5511.2020.05.08

Reference: Zhang GF, Wang H. Endothelial dysfunction is an early event in the pathophysiology of obesity[J]. Yixue Xinzhi Zazhi, 2020, 30(5): 389-394. DOI: 10.12173/j.issn.1004-5511.2020.05.08.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

The prevalence of obesity was increasing at all ages. Obesity was also a risk factor for various systemic diseases, including cardiovascular disease, peripheral vascular atherosclerosis, type 2 diabetes and so on. Endothelial cells were distributed in the vascular lumen, and regulated the homeostasis by coordinating the distribution of blood flow, nutrients, hormones and other cytokines, regulating inflammatory activity and angiogenesis. Obesity was accompanied by dysfunction of vascular endothelial cells and decrease of vascular density. Endothelial dysfunction was associated with obesity. In recent years, research on vascular endothelial cells or its related factors may become a potential treatment strategy to overcome obesity-related metabolic disorders.

Full-text
Please download the PDF version to read the full text: download
References

1. Costantino S, Akhmedov A, Melina G, et al. Obesity-induced activation of JunD promotes myocardial lipid accumulation and metabolic cardiomyopathy[J]. European Heart Journal, 2019, 40(21): 997-1008. DOI: 10.1093/eurheartj/ehy903.

2. Le RH, Van BG. Study of phendimetrazine bitartrate as an appetite suppressant in relation to dosage, weight loss and side effects[J]. Can Med Assoc J, 1962, 87(1): 29-31. DOI: 10.1093/qjmam/14.4.471.

3. Nijhawans P, Behl T, Bhardwaj S. Angiogenesis in obesity[J]. Biomed Pharmacother, 2020, 126: 110103. DOI: 10.1016/j.biopha.2020.110103.

4. White U, Ravussin E. Dynamics of adipose tissue turnover in human metabolic health and disease[J]. Diabetologia, 2019, 62(1): 17-23. DOI: 10.1007/s00125-018-4732-x.

5. Kwaifa IK, Bahari H, Yong YK, et al. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications[J]. Biomolecules, 2020, 10(2): 291. DOI: 10.3390/biom10020291.

6. Ghosh A, Gao L, Thakur A, et al. (2017) Role of free fatty acids in endothelial dysfunction[J]. J Biomed Sci, 2017, 24(1): 50. DOI: 10.1186/s12929-017-0357-5.

7. Cristina M. Sena, Fernanda Carrilho, Raquel M. Seiça. Endothelial Dysfunction in Type 2 Diabetes: Targeting Inflammation[J]. IntechOpen, 2018. DOI: 10.5772/intechopen.76994.

8. Dhananjayan R, Koundinya KS, Malati T, et al. Endothelial Dysfunction in Type 2 Diabetes Mellitus[J]. Indian J Clin Biochem, 2016, 31(4): 372-379. DOI: 10.1007/s12291-015-0516-y.

9. Lai WK, Kan MY. Homocysteine-induced endothelial dysfunction[J]. Ann Nutr Metab, 2015, 67(1): 1-12. DOI: 10. 1159/000437098.

10.    Graupera M, Claret M. Endothelial cells: new players in obesity and related metabolic disorders[J]. Trends Endocrinol Metab, 2018, 29(11): 781-794. DOI: 10.1016/j.tem.2018.09.003.

11.    Miyagawa K, Shi M, Chen PI, et al. Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-mediated metabolic and epigenetic changes[J]. Circ Res, 2019, 124(2): 211-224. DOI: 10.1161/CIRCRESAHA.118.313374.

12.    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis[J]. Nature, 2011, 473(7347): 298-307. DOI: 10.1038/nature10144.

13.    Stapleton PA, James ME, Goodwill AG, et al. Obesity and vascular dysfunction. Pathophysiology[J]. Pathophysiology, 2008, 15(2): 79-89. DOI: 10.1016/j.pathophys.2008.04.007.

14.    Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity[J]. Physiol Rev, 2013, 93(1): 1-21. DOI: 10.1152/physrev.00017.2012.

15.    Hosogai N, Fukuhara A, Oshima K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation[J]. Diabetes, 2007, 56(4): 901-911. DOI: 10.2337/db06-0911.

16.    Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice[J]. Am J Physiol Endocrinol Metab, 2007, 293(4): E1118-E1128. DOI: 10.1152/ajpendo.00435.2007.

17.    Pasarica M, Sereda OR, Redman LM, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response[J]. Diabetes, 2009, 58(3): 718-725. DOI: 10.2337/db08-1098.

18.    Chen B, Lam KSL, Wang Y, et al. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes[J]. Biochem Biophys Res Commun, 2006, 341(2): 549-556. DOI: 10.1016/j.bbrc.2006.01.004.

19.    Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease[J]. J Clin Invest, 2017, 127(1): 1-4. DOI: 10.1172/JCI92035.

20.    Ventura A, Luzi L, Pacini S, et al. The p66Shc longevity gene is silenced through epigenetic modifications of an alternative promoter[J]. J Biol Chem, 2002, 277(25): 22370-22376. DOI: 10.1074/jbc.M200280200.

21.    Sena CM, Pereira AM, Seiça R.  Endothelial dysfunction - a major mediator of diabetic vascular disease[J]. Biochim Biophys Acta, 2013, 1832(12): 2216-2231. DOI: 10.1016/j.bbadis.2013.08.006.

22.    Engin A. Endothelial Dysfunction in Obesity[J]. Adv Exp Med Biol, 2017, 960: 345-379. DOI: 10.1007/978-3-319-48382-5_15.

23.    Risau W, Flamme I. Vasculogenesis[J]. Annu Rev Cell Dev Biol, 1995, 11: 73-91. DOI: 10.1146/annurev.cb.11.110195.000445.

24.    Miao RQ, Agata J, Chao L, Chao J. Kalistatin is a new inhibitor of angiogenesis and tumor growth[J]. Blood, 2002, 100 (9): 3245-3252.

25.    Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth[J]. J Cell Mol Med, 2002, 6(1): 1-12. DOI: 10.1111/j.1582-4934.2002.tb00307.x.

26.    Xu F, Burk D, Gao Z, Yin J, et al. Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/- mice[J]. Endocrinology, 2012, 153(4): 1706-1716. DOI: 10.1210/en.2011-1667.

27.    Cheng LC, Guo BC, Chen CH, et al. Endothelial nitric oxide mediates the anti-atherosclerotic action of torenia concolor lindley var. Formosama yamazaki[J]. Int J Mol Sci,  2020, 21(4): 1532. DOI: 10.3390/ijms21041532.

28.    Kubota T, Kubota N, Kumagai H, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle[J]. Cell Metab, 2011, 13(3): 294-307. DOI: 10.1016/j.cmet.2011.01.018.

29.    Karaca Ü, Schram MT, Houben AJ, et al. Microvascular dysfunction as a link between obesity, insulin resistance and hypertension[J]. Diabetes Res Clin Pract, 2014, 103(3): 382-387. DOI: 10.1016/j.diabres.2013.12.012.

30.    Sena CM, Pereira A, Fernandes R, et al. Adiponectin improves endothelial function in mesenteric arteries of rats fed a high-fat diet: role of perivascular adipose tissue[J]. Br J Pharmacol, 2017, 174(20): 3514-3526. DOI: 10.1111/bph.13756.

31.    An YA, Sun K, Joffin N, et al. Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis[J]. Elife, 2017, 6: e24071. DOI: 10.7554/eLife.24071.

32.    Sung HK, Doh KO, Son JE, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis[J]. Cell Metab, 2013, 17(1): 61-72. DOI: 10.1016/j.cmet.2012.12.010.

33.    Bråkenhielm E1, Cao R, Gao B, et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice[J]. Circ Res, 2004, 94(12): 1579-1588. DOI: 10.1161/01.RES.0000132745.76882.70.

34.    Kim YM, An JJ, Jin YJ, et al. Assessment of the anti-obesity effects of the TNP-470 analog, CKD-732[J]. J Mol Endocrinol, 2007, 38(4): 455-465. DOI: 10.1677/jme.1.02165.

35.    Kruger N, Biwer L A, Good ME, et al. Loss of endothelial FTO antagonizes obesity-induced metabolic and vascular dysfunction[J]. Cric Res, 2020, 126(2): 232-242. DOI: 10.1161/CIRCRESAHA.119.315531.

36.    Bibli SI, Hu J, Sigala F, et al. Cystathionine γ lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis[J]. Circulation, 2019, 139(1): 101-114. DOI: 10.1161/CIRCULATIONAHA.118.034757.