Welcome to visit Zhongnan Medical Journal Press Series journal website!

The research and progress of organoid in urinary tumors

Published on Oct. 16, 2020Total Views: 4984 timesTotal Downloads: 2415 timesDownloadMobile

Author: Jun-Wen XIAO 1 Kun HU 2 Gang-Lin SU 3 Hao SUN 1 Yu-Chen LIU 1*

Affiliation: 1. The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital , Key Laboratory of Urogenital Tumor System and Synthetic Biology , Shenzhen 518000, Guangdong Province, China 2. Department of Urology, Shenzhen Second People′s Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen 518000, Guangdong Province, China 3. Department of Clinical Medicine, Shantou University Medical College, Shantou 515041, Guangdong Province, China

Keywords: Urologic neoplasms Organoid 3D culture Cancer research

DOI: 10.12173/j.issn.1004-5511.2020.05.06

Reference: Xiao JW, Hu K, Su GL, Sun H, Liu YC. The research and progress of organoid in urinary tumors[J]. Yixue Xinzhi Zazhi, 2020, 30(5): 376-382. DOI: 10.12173/j.issn.1004-5511.2020.05.06.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

As an emerging 3D in vitro model system, organoids have the advantages of maintaining the original tissue genotype and biological characteristics, and can to some extent simulate the structural relationship between cells and matrix in in-situ tissues, as well as the development process and organ function.The tumor-like organs formed by tumor tissue culture with this technique can further reveal the changes of different information molecules and mechanisms in the process of tumor genesis, development and maintenance, and further understand the process of tumor genesis.In terms of urinary tumors, relevant experiments have proved that the 3D organ-like technology can make up for the defects of the traditional 2D model culture technology, and help to establish the model of urinary tumorigenesis and the molecular characteristics of the tumor phenotype, so as to discover the biomarkers of the origin of tumor cells in various urinary organs and tumor lineages.Great possibilities have been created for the development of innovative therapies using organoids, the identification of biomarkers for diagnosis or prognosis, the development of screening systems, and the development of patient-specific therapies.This article mainly describes the related research and progress of organoid tumors in common urologic neoplasms.

Full-text
Please download the PDF version to read the full text: download
References

1. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI: 10.1038/nature07935.

2. Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease [J]. Nat Rev Mol Cell Biol, 2014, 15(10): 647-664. DOI: 10.1038/nrm3873. 

3. Siegel R L, Miller K D, Fedewa S A, et al. Colorectal cancer statistics, 2017[J]. CA: a cancer journal for clinicians, 2017, 67(3): 177-193. DOI: 10.3322/caac.21395.

4. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.

5. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche[J]. Biochim Biophys Acta, 2014, 1840(8): 2506-2519. DOI: 10.1016/j.bbagen.2014.01.010.

6. Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells[J]. Nature, 2012, 483(7391): 570-575. DOI: 10.1038/nature11005. 

7. Njoku DB. The immortal life of Henrietta Lacks[J]. Anesth Analg, 2013, 117(1): 286. DOI: 10.1213/ANE.0b013e31828bfecc.

8. Olivotto M, Dello Sbarba P. Environmental restrictions within tumor ecosystems select for a convergent, hypoxia-resistant phenotype of cancer stem cells[J]. Cell Cycle, 2008, 7(2): 176-187. DOI: 10.4161/cc.7.2.5315.

9. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research[J]. Cancer Discov, 2014, 4(9): 998-1013. DOI: 10.1158/2159-8290.CD-14-0001.

10. Hurtado Del Pozo C, Garreta E, Izpisúa Belmonte JC, et al. Modeling epigenetic modifications in renal development and disease with organoids and genome editing[J]. Dis Model Mech, 2018, 11(11): dmm035048. DOI: 10.1242/dmm.035048.

11. Drost J, Karthaus WR, Gao D, et al. Organoid culture systems for prostate epithelial and cancer tissue[J]. Nat Protoc, 2016, 11(2): 347-358. DOI: 10.1038/nprot.2016.006. 

12. Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187. DOI: 10.1016/j.cell.2014.08.016. 

13. Karthaus WR, Iaquinta PJ, Drost J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell, 2014, 159(1): 163-175. DOI: 10.1016/j.cell.2014.08.017.

14. Gao D, Chen Y. Organoid development in cancer genome discovery[J]. Curr Opin Genet Dev, 2015, 30: 42-48. DOI: 10.1016/j.gde.2015.02.007.

15. Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer[J]. Nature, 2012, 487(7406): 239-243. DOI: 10.1038/nature11125. 

16. Risbridger GP, Toivanen R, Taylor RA. Preclinical Models of Prostate Cancer: Patient-Derived Xenografts, Organoids, and Other Explant Models[J]. Cold Spring Harb Perspect Med, 2018, 8(8): a030536. DOI: 10.1101/cshperspect.a030536. 

17. Morizane R, Bonventre JV. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells[J]. Nat Protoc, 2017, 12(1): 195-207.DOI: 10.1038/nprot.2016.170.

18. Morizane R, Lam AQ, Freedman BS, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury[J]. Nat Biotechnol, 2015, 33(11): 1193-1200. DOI: 10.1038/nbt.3392.

19. Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2016, 536(7615): 238. DOI: 10.1038/nature15695. 

20. Na JC, Kim JH, Kim SY, et al. Establishment of patient-derived three-dimensional organoid culture in renal cell carcinoma[J]. Investig Clin Urol, 2020, 61(2): 216-223. DOI: 10.4111/icu.2020.61.2.216.

21. Jun DY, Kim SY, Na JC, et al. Tubular organotypic culture model of human kidney[J]. PloS one, 2018, 13(10): e0206447. DOI: 10.1371/journal.pone.0206447. 

22. Daher A, de Boer WI, Le Frère-Belda MA, et al. Growth, differentiation and senescence of normal human urothelium in an organ-like culture[J]. Eur Urol, 2004, 45(6): 799-805. DOI: 10.1016/j.eururo.2004.01.002. 

23. Southgate J, Hutton KA, Thomas DF, et al. Normal human urothelial cells in vitro: proliferation and induction of stratification[J]. Laboratory investigation; a journal of technical methods and pathology, 1994, 71(4): 583-594.

24. Osborn SL, Thangappan R, Luria A, et al. Induction of human embryonic and induced pluripotent stem cells into urothelium[J]. Stem Cells Transl Med, 2014, 3(5): 610-619.DOI: 10.5966/sctm.2013-0131.

25. Kang M, Kim HH, Han YM. Generation of bladder urothelium from human pluripotent stem cells under chemically defined serum- and feeder-free system[J].  Int J Mol Sci, 2014, 15(5): 7139-7157. DOI: 10.3390/ijms15057139.

26. Earl J, Rico D, Carrillo-de-Santa-Pau E, et al. The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies[J]. BMC Genomics, 2015, 16(1): 403. DOI: 10.1186/s12864-015-1450-3.

27. NNickerson ML, Witte N, Im KM, et al. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response[J]. Oncogene, 2017, 36(1): 35-46. DOI: 10.1038/onc.2016.172.

28. Ahmad I, Sansom OJ, Leung HY. Exploring molecular genetics of bladder cancer: lessons learned from mouse models[J]. Dis Model Mech, 2012, 5(3): 323-332. DOI: 10.1242/dmm.008888. 

29. Mullenders J, de Jongh E, Brousali A, et al. Mouse and human urothelial cancer organoids: A tool for bladder cancer research[J]. Proc Natl Acad Sci USA, 2019, 116(10): 4567-4574. DOI: 10.1073/pnas.1803595116. 

30. Okuyama H, Yoshida T, Endo H, et al. Involvement of heregulin/HER3 in the primary culture of human urothelial cancer[J].  J Urol, 2013, 190(1): 302-310. DOI: 10.1016/j.juro.2012.12.106. 

31. Aine M, Eriksson P, Liedberg F, Sjödahl G, et al. Biological determinants of bladder cancer gene expression subtypes[J]. Sci Rep, 2015, 5: 10957. DOI: 10.1038/srep10957.

32. Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy[J]. Cancer Cell, 2014, 25(2): 152-165. DOI: 10.1016/j.ccr.2014.01.009. 

33. Choi W, Czerniak B, Ochoa A, et al. Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer[J]. Nat Rev Urol, 2014, 11(7): 400-410. DOI: 10.1038/nrurol.2014.129. 

34. Solit DB, Garraway LA, Pratilas CA, et al.BRAF mutation predicts sensitivity to MEK inhibition[J]. Nature, 2006, 439(7074): 358-362. DOI: 10.1038/nature04304.

35. Vela I, Chen Y. Prostate cancer organoids: a potential new tool for testing drug sensitivity[J]. Expert Rev Anticancer Ther, 2015, 15(3): 261-263. DOI: 10.1586/14737140.2015.1003046. 

36. Li ML, Xu YZ, Lu WJ, et al. Chloroquine potentiates the anticancer effect of sunitinib on renal cell carcinoma by inhibiting autophagy and inducing apoptosis[J]. Oncol Lett, 2018, 15(3): 2839-2846. DOI: 10.3892/ol.2017.7635.

37. Lee SH, Hu W, Matulay JT, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2): 515-528.e17. DOI: 10.1016/j.cell.2018.03.017. 

38. Fong ELS, Toh TB, Lin QXX, et al. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer[J]. Biomaterials, 2018, 159: 229-240. DOI: 10.1016/j.biomaterials.2017.12.026.