1. Langan RC. Benign prostatic hyperplasia[J]. Prim Care, 2019, 46(2): 223-232. DOI: 10.1016/j.pop.2019.02.003.
2. Kim EH, Larson JA, Andriole GL. Management of benign prostatic hyperplasia[J]. Annu Rev Med, 2016, 67: 137-151. DOI: 10.1146/annurev-med-063014-123902.
3. Jin S, Xiang P, Liu J, et al. Activation of cGMP/PKG/p65 signaling associated with PDE5-Is downregulates CCL5 secretion by CD8 (+) T cells in benign prostatic hyperplasia[J]. Prostate, 2019, 79(8): 909-919. DOI: 10.1002/pros.23801.
4. Yang M, Xu Z, Zhuang Z. Macrophages affect immune inflammation and proliferation in benign prostatic hyperplasia via androgen receptor and CD40/CD40L signaling pathway[J]. Tissue Cell, 2020, 64: 101343. DOI: 10.1016/j.tice.2020.101343.
5. Ratajczak W, Laszczyńska M, Rył A, et al. Tissue immunoexpression of IL-6 and IL-18 in aging men with BPH and MetS and their relationship with lipid parameters and gut microbiota-derived short chain fatty acids[J]. Aging (Albany NY), 2023, 15(20): 10875-10896. DOI: 10.18632/aging.205091.
6. Li LY, Han J, Wu L, et al. Alterations of gut microbiota diversity, composition and metabonomics in testosterone-induced benign prostatic hyperplasia rats[J]. Mil Med Res, 2022, 9(1): 12. DOI: 10.1186/s40779-022-00373-4.
7. Zhu C, Wu J, Wu Y, et al. Triglyceride to high-density lipoprotein cholesterol ratio and total cholesterol to high-density lipoprotein cholesterol ratio and risk of benign prostatic hyperplasia in Chinese male subjects[J]. Front Nutr, 2022, 9: 999995. DOI: 10.3389/fnut.2022.999995.
8. Fu X, Liu J, Liu D, et al. Glucose-regulated protein 78 modulates cell growth, epithelial-mesenchymal transition, and oxidative stress in the hyperplastic prostate[J]. Cell Death Dis, 2022, 13(1): 78. DOI: 10.1038/s41419-022-04522-4.
9. Zendehdel A, Ansari M, Khatami F, et al. The effect of vitamin D supplementation on the progression of benign prostatic hyperplasia: a randomized controlled trial[J]. Clin Nutr, 2021, 40(5): 3325-3331. DOI: 10.1016/j.clnu.2020.11.005.
10. Ghadian A, Rezaei M. Combination therapy with omega-3 fatty acids plus tamsulocin and finasteride in the treatment of men with lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH)[J]. Inflammopharmacology, 2017, 25(4): 451-458. DOI: 10.1007/s10787-017-0343-2.
11. Zhang S, Zhang X, Yang H, et al. Hurdle or thruster: glucose metabolism of T cells in anti-tumour immunity[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(1): 189022. DOI: 10.1016/j.bbcan.2023.189022.
12. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies[J]. Hum Mol Genet, 2014, 23(R1): R89-98. DOI: 10.1093/hmg/ddu328.
13. Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020, 52(10): 1036-1045. DOI: 10.1038/s41588-020-0684-4.
14. Chen Y, Lu T, Pettersson-Kymmer U, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases[J]. Nat Genet, 2023, 55(1): 44-53. DOI: 10.1038/s41588-022-01270-1.
15. Song Z, Li W, Han Y, et al. Association of immune cell traits with Parkinson's disease: a Mendelian randomization study[J]. Front Aging Neurosci, 2024, 16: 1340110. DOI: 10.3389/fnagi.2024. 1340110.
16. Du J, Fang L, Dong K, et al. Exploring the complex relationship between attention deficit hyperactivity disorder and the immune system: a bidirectional Mendelian randomization analysis[J]. J Affect Disord, 2025, 369: 854-860. DOI: 10.1016/j.jad.2024.10.050.
17. Hou S, Jin C, Shi B, et al. Causal inference between immune cells and glioblastoma: a bidirectional Mendelian randomization study[J]. J Cancer, 2025, 16(1): 171-181. DOI: 10.7150/jca. 100519.
18. Au Yeung SL, Schooling CM. Impact of glycemic traits, type 2 diabetes and metformin use on breast and prostate cancer risk: a Mendelian randomization study[J]. BMJ Open Diabetes Res Care, 2019, 7(1): e000872. DOI: 10.1136/bmjdrc-2019-000872.
19. Bochud M, Rousson V. Usefulness of Mendelian randomization in observational epidemiology[J]. Int J Environ Res Public Health, 2010, 7(3): 711-728. DOI: 10.3390/ijerph7030711.
20. Xu M, Zheng J, Hou T, et al. SGLT2 inhibition, choline metabolites, and cardiometabolic diseases: a mediation Mendelian randomization study[J]. Diabetes Care, 2022, 45(11): 2718-2728. DOI: 10.2337/dc22-0323.
21. Shao X, Yu R, Zhao H, et al. Causal relationship between genetically determined plasma metabolites and skin cancer: a two-sample Mendelian randomization study[J]. Arch Dermatol Res, 2024, 316(6): 214. DOI: 10.1007/s00403-024-03011-2.
22. Carter AR, Sanderson E, Hammerton G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021, 36(5): 465-478. DOI: 10.1007/s10654-021-00757-1.
23. Petrie HT, Zúñiga-Pflücker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus[J]. Annu Rev Immunol, 2007, 25: 649-679. DOI: 10.1146/annurev.immunol. 23.021704.115715.
24. Overgaard NH, Jung JW, Steptoe RJ, et al. CD4+/CD8+ double-positive T cells: more than just a developmental stage?[J]. J Leukoc Biol, 2015, 97(1): 31-38. DOI: 10.1189/jlb.1RU0814-382.
25. Wang S, Shen H, Bai B, et al. Increased CD4(+)CD8(+) double-positive T cell in patients with primary Sjögren's syndrome correlated with disease activity[J]. J Immunol Res, 2021, 2021: 6658324. DOI: 10.1155/2021/6658324.
26. Parel Y, Chizzolini C. CD4+ CD8+ double positive (DP) T cells in health and disease[J]. Autoimmun Rev, 2004, 3(3): 215-220. DOI: 10.1016/j.autrev.2003.09.001.
27. Hirao J, Sugita K. Circulating CD4+CD8+ T lymphocytes in patients with Kawasaki disease[J]. Clin Exp Immunol, 1998, 111(2): 397-401. DOI: 10.1046/j.1365-2249.1998.00480.x.
28. Mizutani H, Katagiri S, Uejima K, et al. T-cell abnormalities in patients with idiopathic thrombocytopenic purpura: the presence of OKT4+8+ cells[J]. Scand J Haematol, 1985, 35(2): 233-239. DOI: 10.1111/j.1600-0609.1985.tb01580.x.
29. Parel Y, Aurrand-Lions M, Scheja A, et al. Presence of CD4+CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis[J]. Arthritis Rheum, 2007, 56(10): 3459-3467. DOI: 10.1002/art.22927.
30. Das G, Augustine MM, Das J, et al. An important regulatory role for CD4+CD8 alpha alpha T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease[J]. Proc Natl Acad Sci U S A, 2003, 100(9): 5324-5329. DOI: 10.1073/pnas.0831037100.
31. Vickman RE, Aaron-Brooks L, Zhang R, et al. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease[J]. Nat Commun, 2022, 13(1): 2133. DOI: 10.1038/s41467-022-29719-1.
32. Avila MA, García-Trevijano ER, Lu SC, et al. Methylthioadenosine[J]. Int J Biochem Cell Biol, 2004, 36(11): 2125-2130. DOI: 10.1016/j.biocel.2003.11.016.
33. Rattajak P, Aroonkesorn A, Smythe C, et al. 5'-Methylthioadenosine strongly suppresses RANKL-induced osteoclast differentiation and function via inhibition of RANK-NFATc1 signalling pathways[J]. Heliyon, 2023, 9(11): e22365. DOI: 10.1016/j.heliyon.2023.e22365.
34. Mary C, Duek P, Salleron L, et al. Functional identification of APIP as human mtnB, a key enzyme in the methionine salvage pathway[J]. PLoS One, 2012, 7(12): e52877. DOI: 10.1371/journal.pone.0052877.
35. Hung MH, Lee JS, Ma C, et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma[J]. Nat Commun, 2021, 12(1): 1455. DOI: 10.1038/s41467-021-21804-1.
36. Roberts ME, Kaminski D, Jenks SA, et al. Primary Sjögren's syndrome is characterized by distinct phenotypic and transcriptional profiles of IgD+ unswitched memory B cells[J]. Arthritis Rheumatol, 2014, 66(9): 2558-2569. DOI: 10.1002/art.38734.
37. Warnatz K, Denz A, Dräger R, et al. Severe deficiency of switched memory B cells (CD27(+)IgM(-)IgD(-)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease[J]. Blood, 2002, 99(5): 1544-1551. DOI: 10.1182/blood.v99.5.1544.
38. Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. DOI: 10.1016/j.cmet.2016.05.005.
39. Kiriyama Y, Nochi H. The role of gut microbiota-derived lithocholic acid, deoxycholic acid and their derivatives on the function and differentiation of immune cells[J]. Microorganisms, 2023, 11(11): 2730. DOI: 10.3390/microorganisms11112730.
40. Wang L, Gong Z, Zhang X, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation[J]. Gut Microbes, 2020, 12(1): 1-20. DOI: 10.1080/19490976.2020.1819155.
41. Hu J, Wang C, Huang X, et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling[J]. Cell Rep, 2021, 36(12): 109726. DOI: 10.1016/j.celrep.2021.109726.