Welcome to visit Zhongnan Medical Journal Press Series journal website!

The role of neutrophil extracellular traps in ulcerative colitis

Published on Mar. 25, 2025Total Views: 201 timesTotal Downloads: 65 timesDownloadMobile

Author: MENG Qiuyue 1, 2# YUAN Yifan 3# LI Na 1, 2# LU Jiali 1, 2 YE Mei 1, 2

Affiliation: 1. Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 2. Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China 3. Department of Gerontology and Geriatrics, West China Hospital, Sichuan University, China National Clinical Research Center for Geriatric Medicine, Chengdu 610041, China

Keywords: Neutrophil extracellular traps Ulcerative colitis Single-cell and bulk RNA sequencing Machine learning Molecular classification

DOI: 10.12173/j.issn.1004-5511.202412002

Reference: Meng QY, Yuan YF, Li N, Lu JL, Ye M. The role of neutrophil extracellular traps in ulcerative colitis[J]. Yixue Xinzhi Zazhi, 2025, 35(3): 289-302. DOI: 10.12173/j.issn.1004-5511.202412002. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the role of neutrophil extracellular traps (NETs) in the pathogenesis of ulcerative colitis (UC).

Methods  RNA data from UC patients and normal controls were downloaded from the GEO database to screen for differential expression genes (DEGs), intersecting the screened genes with previously reported NETs-associated genes for functional enrichment assays such as GO, KEGG, and GSEA. Use machine learning to identify key genes for further analysis of immune infiltration and biological function. Diagnostic models were constructed based on key genes and validated against external data sets, and NETs associated molecular subtypes were identified. Prediction of drugs targeting key genes using DGIdb database.

Results  A total of 38 NETs-related DEGs were screened. F3, MME, PTAFR, and SLC25A37 were identified as key genes, with elevated levels of mRNA expression, and were associated with inflammatory signaling pathways and exhibited remarkable diagnostic efficacy. Two unique NETs-related subtypes derived from key genes had distinct immune and clinical characteristics. 22 targeted drugs might become potential therapeutic agents for UC.

Conclusion  NETs expression is elevated in UC patients and plays a pro-inflammatory role in disease progression. F3, MME, PTAFR, and SLC25A37 were identified as potential contributors to the pathogenesis of UC. The two identified subtypes of NETs can provide some reference for the clinical treatment of UC.

Full-text
Please download the PDF version to read the full text: download
References

1.Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis[J]. Lancet, 2023, 402(10401): 571-584. DOI: 10.1016/S0140-6736(23)00966-2.

2.Gros B, Kaplan GG. Ulcerative colitis in adults: a review[J]. JAMA, 2023, 330(10): 951-965. DOI: 10.1001/jama.2023.15389.

3.Kilic Y, Kamal S, Jaffar F, et al. Prevalence of extraintestinal manifestations in inflammatory bowel disease: a systematic review and Meta-analysis[J]. Inflamm Bowel Dis, 2024, 30(2): 230-239. DOI: 10.1093/ibd/izad061.

4.Saez A, Herrero-Fernandez B, Gomez-Bris R, et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24(2): 1526. DOI: 10.3390/ijms24021526.

5.Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535. DOI: 10.1126/science.1092385.

6.Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases[J]. Nat Rev Immunol, 2023, 23(5): 274-288. DOI: 10.1038/s41577-022-00787-0.

7.Neubert E, Meyer D, Kruss S, et al. The power from within - understanding the driving forces of neutrophil extracellular trap formation[J]. J Cell Sci, 2020, 133(5): jcs241075. DOI: 10.1242/jcs.241075.

8.Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity[J]. J Immunol, 2012, 189(6): 2689-2695. DOI: 10.4049/jimmunol.1201719.

9.Dos Santos Ramos A, Viana GCS, de Macedo Brigido M, et al. Neutrophil extracellular traps in inflammatory bowel diseases: Implications in pathogenesis and therapeutic targets[J]. Pharmacol Res, 2021, 171: 105779. DOI: 10.1016/j.phrs.2021.105779.

10.Bennike TB, Carlsen TG, Ellingsen T, et al. Neutrophil extracellular traps in ulcerative colitis: a proteome analysis of intestinal biopsies[J]. Inflamm Bowel Dis, 2015, 21(9): 2052-2067. DOI: 10.1097/MIB.0000000000000460.

11.Angelidou I, Chrysanthopoulou A, Mitsios A, et al. REDD1/autophagy pathway is associated with neutrophil-driven IL-1beta inflammatory response in active ulcerative colitis[J]. J Immunol, 2018, 200(12): 3950-3961. DOI: 10.4049/jimmunol.1701643.

12.Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6): 772-784. DOI: 10.1093/ecco-jcc/jjy215.

13.Zhang Y, Guo L, Dai Q, et al. A signature for pan-cancer prognosis based on neutrophil extracellular traps[J]. J Immunother Cancer, 2022, 10(6): e004210. DOI: 10.1136/jitc-2021-004210.

14.Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-883. DOI: 10.1093/bioinformatics/bts034.

15.Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1): 1-22. DOI: 10.18637/jss.v033.i01.

16.Cannon M, Stevenson J, Stahl K, et al. DGIdb 5.0: rebuilding the drug-gene interaction database for precision medicine and drug discovery platforms[J]. Nucleic Acids Res, 2024, 52(D1): D1227-D1235. DOI: 10.1093/nar/gkad1040.

17.Camuesco D, Rodríguez-Cabezas ME, Garrido-Mesa N, et al. The intestinal anti-inflammatory effect of dersalazine sodium is related to a down-regulation in IL-17 production in experimental models of rodent colitis[J]. Br J Pharmacol, 2012, 165(3): 729-740. DOI: 10.1111/j.1476-5381.2011.01598.x.

18.Pontes C, Vives R, Torres F, et al. Safety and activity of dersalazine sodium in patients with mild-to-moderate active colitis: double-blind randomized proof of concept study[J]. Inflamm Bowel Dis, 2014, 20(11): 2004-2012. DOI: 10.1097/MIB.0000000000000166.

19.Bernstein CN. Review article: changes in the epidemiology of inflammatory bowel disease-clues for aetiology[J]. Aliment Pharmacol Ther, 2017, 46(10): 911-919. DOI: 10.1111/apt.14338.

20.Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease[J]. Nat Med, 2017, 23(3): 279-287. DOI: 10.1038/nm.4294.

21.Rauch U, Nemerson Y. Circulating tissue factor and thrombosis[J]. Curr Opin Hematol, 2000, 7(5): 273-277. DOI: 10.1097/00062752-200009000-00003.

22.Witkowski M, Landmesser U, Rauch U. Tissue factor as a link between inflammation and coagulation[J]. Trends Cardiovas Med, 2016, 26(4): 297-303. DOI: 10.1016/j.tcm.2015.12.001.

23.Depondt C, Donatello S, Rai M, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43)[J]. Neurol Genet, 2016, 2(5): e94. DOI: 10.1212/NXG.0000000000000094.

24.Li M, Wang L, Zhan Y, et al. Membrane metalloendopeptidase (MME) suppresses metastasis of esophageal squamous cell carcinoma (ESCC) by inhibiting FAK-RhoA signaling axis[J]. Am J Pathol, 2019, 189(7): 1462-1472. DOI: 10.1016/j.ajpath.2019.04.007.

25.Ding JT, Li CX, Shu KX, et al. Membrane metalloendopeptidase (MME) is positively correlated with systemic lupus erythematosus and may inhibit the occurrence of breast cancer[J]. Plos One, 2023, 18(8): e0289960. DOI: 10.1371/journal.pone.0289960.

26.Hyland IK, O'Toole RF, Smith JA, et al. Progress in the development of platelet-activating factor receptor (PAFr) antagonists and applications in the treatment of inflammatory diseases[J]. ChemMedChem, 2018, 13(18): 1873-1884. DOI: 10.1002/cmdc.201800401.

27.Edwards LJ, Constantinescu CS. Platelet activating factor/platelet activating factor receptor pathway as a potential therapeutic target in autoimmune diseases[J]. Inflamm Allergy Drug Targets, 2009, 8(3): 182-190. DOI: 10.2174/187152809788681010.

28.Liu G, Mateer SW, Hsu A, et al. Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome[J]. Mucosal Immunol, 2019, 12(4): 862-873. DOI: 10.1038/s41385-019-0163-3.

29.Ye C, Zhao Y, Yu W, et al. Identifying PTAFR as a hub gene in atherosclerosis: implications for NETosis and disease progression[J]. Hum Genomics, 2024, 18(1): 139. DOI: 10.1186/s40246-024-00708-3.

30.Derakhshani A, Safarpour H, Abdoli Shadbad M, et al. The role of hemoglobin subunit delta in the immunopathy of multiple sclerosis: mitochondria matters[J]. Front Immunol, 2021, 12: 709173. DOI: 10.3389/fimmu.2021.709173.

31.Mitsialis V, Wall S, Liu P, et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn's disease[J]. Gastroenterology, 2020, 159(2): 591-608, e10. DOI: 10.1053/j.gastro.2020.04.074.

32.Bressenot A, Salleron J, Bastien C, et al. Comparing histological activity indexes in UC[J]. Gut, 2015, 64(9): 1412-1418. DOI: 10.1136/gutjnl-2014-307477.

33.Chen ML, Sundrud MS. Cytokine networks and T-cell subsets in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2016, 22(5): 1157-1167. DOI: 10.1097/MIB.0000000000000714.

34.Rosen MJ, Karns R, Vallance JE, et al. Mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis from colon-only Crohn's disease in treatment-naive pediatric patients[J]. Gastroenterology, 2017, 152(6): 1345-1357. e7. DOI: 10.1053/j.gastro.2017.01.016.

35.Mortensen JH, Lindholm M, Langholm LL, et al. The intestinal tissue homeostasis-the role of extracellular matrix remodeling in inflammatory bowel disease[J]. Expert Rev Gastroenterol Hepatol, 2019, 13(10): 977-993. DOI: 10.1080/17474124.2019.1673729.

36.Haberman Y, Karns R, Dexheimer PJ, et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response[J]. Nat Commun, 2019, 10(1): 38. DOI: 10.1038/s41467-018-07841-3.

37.Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6): 772-784. DOI: 10.1093/ecco-jcc/jjy215.

38.Pontes C, Vives R, Torres F, et al. Safety and activity of dersalazine sodium in patients with mild-to-moderate active colitis: double-blind randomized proof of concept study[J]. Inflamm Bowel Dis, 2014, 20(11): 2004-2012. DOI: 10.1097/MIB.0000000000000166.