1.Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis[J]. Lancet, 2023, 402(10401): 571-584. DOI: 10.1016/S0140-6736(23)00966-2.
2.Gros B, Kaplan GG. Ulcerative colitis in adults: a review[J]. JAMA, 2023, 330(10): 951-965. DOI: 10.1001/jama.2023.15389.
3.Kilic Y, Kamal S, Jaffar F, et al. Prevalence of extraintestinal manifestations in inflammatory bowel disease: a systematic review and Meta-analysis[J]. Inflamm Bowel Dis, 2024, 30(2): 230-239. DOI: 10.1093/ibd/izad061.
4.Saez A, Herrero-Fernandez B, Gomez-Bris R, et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24(2): 1526. DOI: 10.3390/ijms24021526.
5.Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535. DOI: 10.1126/science.1092385.
6.Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases[J]. Nat Rev Immunol, 2023, 23(5): 274-288. DOI: 10.1038/s41577-022-00787-0.
7.Neubert E, Meyer D, Kruss S, et al. The power from within - understanding the driving forces of neutrophil extracellular trap formation[J]. J Cell Sci, 2020, 133(5): jcs241075. DOI: 10.1242/jcs.241075.
8.Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity[J]. J Immunol, 2012, 189(6): 2689-2695. DOI: 10.4049/jimmunol.1201719.
9.Dos Santos Ramos A, Viana GCS, de Macedo Brigido M, et al. Neutrophil extracellular traps in inflammatory bowel diseases: Implications in pathogenesis and therapeutic targets[J]. Pharmacol Res, 2021, 171: 105779. DOI: 10.1016/j.phrs.2021.105779.
10.Bennike TB, Carlsen TG, Ellingsen T, et al. Neutrophil extracellular traps in ulcerative colitis: a proteome analysis of intestinal biopsies[J]. Inflamm Bowel Dis, 2015, 21(9): 2052-2067. DOI: 10.1097/MIB.0000000000000460.
11.Angelidou I, Chrysanthopoulou A, Mitsios A, et al. REDD1/autophagy pathway is associated with neutrophil-driven IL-1beta inflammatory response in active ulcerative colitis[J]. J Immunol, 2018, 200(12): 3950-3961. DOI: 10.4049/jimmunol.1701643.
12.Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6): 772-784. DOI: 10.1093/ecco-jcc/jjy215.
13.Zhang Y, Guo L, Dai Q, et al. A signature for pan-cancer prognosis based on neutrophil extracellular traps[J]. J Immunother Cancer, 2022, 10(6): e004210. DOI: 10.1136/jitc-2021-004210.
14.Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-883. DOI: 10.1093/bioinformatics/bts034.
15.Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1): 1-22. DOI: 10.18637/jss.v033.i01.
16.Cannon M, Stevenson J, Stahl K, et al. DGIdb 5.0: rebuilding the drug-gene interaction database for precision medicine and drug discovery platforms[J]. Nucleic Acids Res, 2024, 52(D1): D1227-D1235. DOI: 10.1093/nar/gkad1040.
17.Camuesco D, Rodríguez-Cabezas ME, Garrido-Mesa N, et al. The intestinal anti-inflammatory effect of dersalazine sodium is related to a down-regulation in IL-17 production in experimental models of rodent colitis[J]. Br J Pharmacol, 2012, 165(3): 729-740. DOI: 10.1111/j.1476-5381.2011.01598.x.
18.Pontes C, Vives R, Torres F, et al. Safety and activity of dersalazine sodium in patients with mild-to-moderate active colitis: double-blind randomized proof of concept study[J]. Inflamm Bowel Dis, 2014, 20(11): 2004-2012. DOI: 10.1097/MIB.0000000000000166.
19.Bernstein CN. Review article: changes in the epidemiology of inflammatory bowel disease-clues for aetiology[J]. Aliment Pharmacol Ther, 2017, 46(10): 911-919. DOI: 10.1111/apt.14338.
20.Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease[J]. Nat Med, 2017, 23(3): 279-287. DOI: 10.1038/nm.4294.
21.Rauch U, Nemerson Y. Circulating tissue factor and thrombosis[J]. Curr Opin Hematol, 2000, 7(5): 273-277. DOI: 10.1097/00062752-200009000-00003.
22.Witkowski M, Landmesser U, Rauch U. Tissue factor as a link between inflammation and coagulation[J]. Trends Cardiovas Med, 2016, 26(4): 297-303. DOI: 10.1016/j.tcm.2015.12.001.
23.Depondt C, Donatello S, Rai M, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43)[J]. Neurol Genet, 2016, 2(5): e94. DOI: 10.1212/NXG.0000000000000094.
24.Li M, Wang L, Zhan Y, et al. Membrane metalloendopeptidase (MME) suppresses metastasis of esophageal squamous cell carcinoma (ESCC) by inhibiting FAK-RhoA signaling axis[J]. Am J Pathol, 2019, 189(7): 1462-1472. DOI: 10.1016/j.ajpath.2019.04.007.
25.Ding JT, Li CX, Shu KX, et al. Membrane metalloendopeptidase (MME) is positively correlated with systemic lupus erythematosus and may inhibit the occurrence of breast cancer[J]. Plos One, 2023, 18(8): e0289960. DOI: 10.1371/journal.pone.0289960.
26.Hyland IK, O'Toole RF, Smith JA, et al. Progress in the development of platelet-activating factor receptor (PAFr) antagonists and applications in the treatment of inflammatory diseases[J]. ChemMedChem, 2018, 13(18): 1873-1884. DOI: 10.1002/cmdc.201800401.
27.Edwards LJ, Constantinescu CS. Platelet activating factor/platelet activating factor receptor pathway as a potential therapeutic target in autoimmune diseases[J]. Inflamm Allergy Drug Targets, 2009, 8(3): 182-190. DOI: 10.2174/187152809788681010.
28.Liu G, Mateer SW, Hsu A, et al. Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome[J]. Mucosal Immunol, 2019, 12(4): 862-873. DOI: 10.1038/s41385-019-0163-3.
29.Ye C, Zhao Y, Yu W, et al. Identifying PTAFR as a hub gene in atherosclerosis: implications for NETosis and disease progression[J]. Hum Genomics, 2024, 18(1): 139. DOI: 10.1186/s40246-024-00708-3.
30.Derakhshani A, Safarpour H, Abdoli Shadbad M, et al. The role of hemoglobin subunit delta in the immunopathy of multiple sclerosis: mitochondria matters[J]. Front Immunol, 2021, 12: 709173. DOI: 10.3389/fimmu.2021.709173.
31.Mitsialis V, Wall S, Liu P, et al. Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn's disease[J]. Gastroenterology, 2020, 159(2): 591-608, e10. DOI: 10.1053/j.gastro.2020.04.074.
32.Bressenot A, Salleron J, Bastien C, et al. Comparing histological activity indexes in UC[J]. Gut, 2015, 64(9): 1412-1418. DOI: 10.1136/gutjnl-2014-307477.
33.Chen ML, Sundrud MS. Cytokine networks and T-cell subsets in inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2016, 22(5): 1157-1167. DOI: 10.1097/MIB.0000000000000714.
34.Rosen MJ, Karns R, Vallance JE, et al. Mucosal expression of type 2 and type 17 immune response genes distinguishes ulcerative colitis from colon-only Crohn's disease in treatment-naive pediatric patients[J]. Gastroenterology, 2017, 152(6): 1345-1357. e7. DOI: 10.1053/j.gastro.2017.01.016.
35.Mortensen JH, Lindholm M, Langholm LL, et al. The intestinal tissue homeostasis-the role of extracellular matrix remodeling in inflammatory bowel disease[J]. Expert Rev Gastroenterol Hepatol, 2019, 13(10): 977-993. DOI: 10.1080/17474124.2019.1673729.
36.Haberman Y, Karns R, Dexheimer PJ, et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response[J]. Nat Commun, 2019, 10(1): 38. DOI: 10.1038/s41467-018-07841-3.
37.Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6): 772-784. DOI: 10.1093/ecco-jcc/jjy215.
38.Pontes C, Vives R, Torres F, et al. Safety and activity of dersalazine sodium in patients with mild-to-moderate active colitis: double-blind randomized proof of concept study[J]. Inflamm Bowel Dis, 2014, 20(11): 2004-2012. DOI: 10.1097/MIB.0000000000000166.