Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress on thunderstorm asthma and its susceptibility factors

Published on Jan. 25, 2025Total Views: 189 timesTotal Downloads: 64 timesDownloadMobile

Author: NAO Min 1 SHAN Hongwei 2

Affiliation: 1. First Clinical Medical College, Inner Mongolia Medical University, Hohhot 010110, China 2. Department of Emergency, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

Keywords: Thunderstorm asthma Bronchial asthma Pathogenesis Influencing factors Pollen Meteorological factors Allergic rhinitis

DOI: 10.12173/j.issn.1004-5511.202409035

Reference: Nao M, Shan HW. Research progress on thunderstorm asthma and its susceptibility factors[J]. Yixue Xinzhi Zazhi, 2025, 35(1): 102-109. DOI: 10.12173/j.issn.1004-5511.202409035. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Thunderstorm asthma refers to a pathological phenomenon in which the acute exacerbation of bronchial asthma or the worsening symptoms occurs due to the action of high concentrations of allergens on susceptible populations under specific meteorological conditions. As a public health issue, thunderstorm asthma can have adverse impacts on both individuals and society. This study reviews the pathogenesis of thunderstorm asthma, environmental triggers (pollen particles and air pollutants), meteorological triggers (relative humidity and temperature), individual susceptibility factors, as well as preventive and control measures, to provide references for related research on thunderstorm asthma and the development of public health policies.

Full-text
Please download the PDF version to read the full text: download
References

1.徐迎阳, 李丽莎, 关凯. 雷暴哮喘[J]. 中华临床免疫和变态反应杂志, 2020, 14(1): 67-70. [Xu YY, Li LS, Guan  K. Thunderstorm asthma[J]. Chinese Journal of Allergy & Clinical Immunology, 2020, 14(1): 67-70.] DOI: 10.3969/j.issn.1673- 8705.2020.01.013.

2.Packe GE, Ayres JG. Asthma outbreak during a thunderstorm[J]. Lancet, 1985, 2(8448): 199-204. DOI: 10.1016/s0140-6736(85) 91510-7.

3.Thien F, Beggs PJ, Csutoros D, et al. The Melbourne epidemic thunderstorm asthma event 2016: an investigation of environmental triggers, effect on health services, and patient risk factors[J]. Lancet Planet Health, 2018, 2(6): e255-e263. DOI: 10.1016/S2542-5196(18)30120-7.

4.Idrose NS, Dharmage SC, Lowe AJ, et al. A systematic review of the role of grass pollen and fungi in thunderstorm asthma[J]. Environ Res, 2020, 181: 108911. DOI: 10.1016/j.envres.2019. 108911.

5.Hughes KM, Price D, Suphioglu C. Importance of allergen-environment interactions in epidemic thunderstorm asthma[J]. Ther Adv Respir Dis, 2022, 16: 17534666221099733. DOI: 10.1177/17534666221099733.

6.Bradbury P, Cidem A, Mahmodi H, et al. Timothy grass pollen induces spatial reorganisation of F-actin and loss of junctional integrity in respiratory cells[J]. Inflammation, 2022, 45(3): 1209-1223. DOI: 10.1007/s10753-021-01614-9.

7.Venkatesan P. Epidemic thunderstorm asthma[J]. Lancet Respir Med, 2022, 10(4): 325-326. DOI: 10.1016/S2213-2600(22) 00083-2.

8.Staff IA, Schäppi G, Taylor PE. Localisation of allergens in ryegrass pollen and in airborne micronic particles[J]. Protoplasma, 1999, 208: 47-57. DOI: 10.1007/BF01279074.

9.Hew M, Lee J, Varese N, et al. Epidemic thunderstorm asthma susceptibility from sensitization to ryegrass (Lolium perenne) pollen and major allergen Lol p 5[J]. Allergy, 2020, 75(9): 2369-2372. DOI: 10.1111/all.14319.

10.邓卓怡, 刘晓佳, 高子奇, 等. 内蒙古自治区变应性鼻炎高发城市气传花粉及相关因素[J]. 中华临床免疫和变态反应杂志, 2021, 15(6): 618-624. [Deng ZY, Liu XJ, Gao ZQ, et al. Analysis of airborne pollens and related factors among cities with high incidence of allergic rhinitis in Inner Mongolia[J]. Chinese Journal of Allergy & Clinical Immunology, 2021, 15(6): 618-624.] DOI: 10.3969/j.issn.1673-8705.2021.06.004.

11.孔咪, 田曼. 蒿草花粉所致气道过敏性疾病的研究进展[J]. 现代医学, 2022, 50(7): 913-918. [Kong M, Tian M. Advances in the study of airway allergic diseases caused by grass pollen[J]. Modern Medical Journal, 2022, 50(7): 913-918.] DOI: 10.3969/j.issn.1671-7562.2022.07.023.

12.Gao Z, Fu WY, Sun Y, et al. Artemisia pollen allergy in China: component-resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization[J]. Allergy, 2019, 74(2): 284-293. DOI: 10.1111/all.13597.

13.Gao ZS, Fu WY, Zhao L, et al. Localization of four allergens in artemisia pollen by immunofluorescent antibodies[J]. Int Arch Allergy Immunol, 2019, 179(3): 165-172. DOI: 10.1159/ 000497321.

14.Jahn-Schmid B, Fischer GF, Bohle B, et al. Antigen presentation of the immunodominant T-cell epitope of the major mugwort pollen allergen, Art v 1, is associated with the expression of HLA-DRB1*01[J]. J Allergy Clin Immunol, 2005, 115(2): 399-404. DOI: 10.1016/j.jaci.2004.10.010.

15.Jahn-Schmid B, Kelemen P, Himly M, et al. The T cell response to Art v 1, the major mugwort pollen allergen, is dominated by one epitope[J]. J Immunol, 2002, 169(10): 6005-6011. DOI: 10.4049/jimmunol.169.10.6005.

16.Razzera G, Gadermaier G, de Paula V, et al. Mapping the interactions between a major pollen allergen and human IgE antibodies[J]. Structure, 2010, 18(8): 1011-1021. DOI: 10.1016/j.str.2010.05.012.

17.O'Sullivan J, O'Sullivan M, Tipton KF, et al. The inhibition of semicarbazide-sensitive amine oxidase by aminohexoses[J]. Biochim Biophys Acta, 2003, 1647(1-2): 367-371. DOI: 10.1016/s1570-9639(03)00096-7.

18.Leonard R, Petersen BO, Himly M, et al. Two novel types of O-glycans on the mugwort pollen allergen Art v1 and their role in antibody binding[J]. J Biol Chem, 2005, 280(9): 7932-7940. DOI: 10.1074/jbc.M410407200.

19.池佼妮. 内蒙地区蒿属花粉过敏组分诊断及致敏模式分析 [D].合肥: 安徽医科大学, 2023. [Chi JN. Component-resolved diagnosis and sensitization pattern analysis of artemisia allergy in Inner Mongolia[D]. Hefei: Anhui Medical University, 2023.] DOI: 10.26921/d.cnki.ganyu.2023.000304.

20.孙立薇. 蒿属花粉和户尘螨对鼻黏膜上皮细胞的影响及其机制研究[D].长春: 吉林大学, 2022. [Sun LW. Effects of artemisia pollen and household dust mites on nasal mucosal epithelial cells and their mechanisms[D]. Changchun: Jilin University, 2022.] DOI: 10.27162/d.cnki.gjlin.2022.000745.

21.李椿莹. 内蒙古中心城市及农村变应性鼻炎吸入过敏原谱优化及蒿属花粉致敏特征分析[D].呼和浩特: 内蒙古医科大学, 2023. [Li CY. Optimization of inhalation allergen spectrum and analysis of pollen sensitization characteristics of Artemisia pollen in allergic rhinitis in central urban and rural areas of Inner Mongolia[D]. Hohhot: Inner Mongolia Medical University, 2023.] DOI: 10.27231/d.cnki.gnmyc.2023.000241.

22.郑卉爽, 李俊达, 茹一, 等. 蒿属花粉过敏性哮喘小鼠模型的建立[J]. 中华临床免疫和变态反应杂志, 2024, 18(4): 376-382. [Zheng HS, Li JD, Ru Y, et al. Establishment of a mouse model of Artemisia pollen-allergic asthma[J]. Chinese Journal of Allergy & Clinical Immunology, 2024, 18(4): 376-382.] DOI: 10.3969/j.issn.1673-8705.2024.04.008.

23.Schäppi GF, Taylor PE, Kenrick J, et al. Predicting the grass pollen count from meteorological data with regard to estimating the severity of hayfever symptoms in Melbourne (Australia)[J]. Aerobiologia, 1998, 14: 29-37. DOI: 10.1007/BF02694592.

24.Nanda A, Mustafa SS, Castillo M, et al. Air pollution effects in allergies and asthma[J]. Immunol Allergy Clin North Am, 2022, 42(4): 801-815. DOI: 10.1016/j.iac.2022.06.004.

25.Eguiluz-Gracia I, Mathioudakis AG, Bartel S, et al. The need for clean air: the way air pollution and climate change affect allergic rhinitis and asthma[J]. Allergy, 2020, 75(9): 2170-2184. DOI: 10.1111/all.14177.

26.Torgerson DG, Ampleford EJ, Chiu GY, et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations[J]. Nat Genet, 2011, 43(9): 887-892. DOI: 10.1038/ng.888.

27.D'Amato G, Chong-Neto HJ, Monge Ortega OP, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens[J]. Allergy, 2020, 75(9): 2219-2228. DOI: 10.1111/all.14476.

28.Tiotiu AI, Novakova P, Nedeva D, et al. Impact of air pollution on asthma outcomes[J]. Int J Environ Res Public Health, 2020, 17(17): 6212. DOI: 10.3390/ijerph17176212.

29.Price D, Hughes KM, Dona DW, et al. The perfect storm: temporal analysis of air during the world's most deadly epidemic thunderstorm asthma (ETSA) event in Melbourne[J]. Ther Adv Respir Dis, 2023, 17: 17534666231186726. DOI: 10.1177/17534666231186726.

30.Michaudel C, Fauconnier L, Julé Y, et al. Functional and morphological differences of the lung upon acute and chronic ozone exposure in mice[J]. Sci Rep, 2018, 8(1): 10611. DOI: 10.1038/s41598-018-28261-9.

31.Niu Y, Chen R, Xia Y, et al. Personal ozone exposure and respiratory inflammatory response: the role of DNA methylation in the arginase-nitric oxide synthase pathway[J]. Environ Sci Technol, 2018, 52(15): 8785-8791. DOI: 10.1021/acs.est.8b01295.

32.Devlin RB, McDonnell WF, Mann R, et al. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung[J]. Am J Respir Cell Mol Biol, 1991, 4(1): 72-81. DOI: 10.1165/ajrcmb/4.1.72.

33.Niu Y, Yang T, Gu X, et al. Long-term ozone exposure and small airway dysfunction: the China pulmonary health (CPH) study[J]. Am J Respir Crit Care Med, 2022, 205(4): 450-458. DOI: 10.1164/rccm.202107-1599OC.

34.Chatelier J, Chan S, Tan JA, et al. Managing exacerbations in thunderstorm asthma: current insights[J]. J Inflamm Res, 2021, 14: 4537-4550. DOI: 10.2147/JIR.S324282.

35.Park JH, Lee E, Fechter-Leggett ED, et al. Associations of emergency department visits for asthma with precipitation and temperature on thunderstorm days: a time-series analysis of data from Louisiana, USA, 2010-2012[J]. Environ Health Perspect, 2022, 130(8): 87003. DOI: 10.1289/EHP10440.

36.Ščevková J, Dušička J, Tropeková M, et al. Summer storms and their effects on the spectrum and quantity of airborne bioparticles in Bratislava, central Europe[J]. Environ Monit Assess, 2020, 192(8): 537. DOI: 10.1007/s10661-020-08497-7.

37.Lu C, Liu Q, Qiao Z, et al. High humidity and NO2 co-exposure exacerbates allergic asthma by increasing oxidative stress, inflammatory and TRP protein expressions in lung tissue[J]. Environ Pollut, 2024, 353: 124127. DOI: 10.1016/j.envpol. 2024.124127.

38.Han A, Deng S, Yu J, et al. Asthma triggered by extreme temperatures: from epidemiological evidence to biological plausibility[J]. Environ Res, 2023, 216(Pt 2): 114489. DOI: 10.1016/j.envres.2022.114489.

39.Yu J, Zhu A, Liu M, et al. The correlation between daily temperature, diurnal temperature range, and asthma hospital admissions in Lanzhou city, 2013-2020[J]. BMC Public Health, 2024, 24(1): 2454. DOI: 10.1186/s12889-024-19737-7.

40.Hew M, Lee J, Susanto NH, et al. The 2016 melbourne thunderstorm asthma epidemic: risk factors for severe attacks requiring hospital admission[J]. Allergy, 2019, 74(1): 122-130. DOI: 10.1111/all.13609.

41.Harun NS, Lachapelle P, Douglass J. Thunderstorm-triggered asthma: what we know so far[J]. J Asthma Allergy, 2019, 12: 101-108. DOI: 10.2147/JAA.S175155.

42.Kevat A. Thunderstorm asthma: looking back and looking forward[J]. J Asthma Allergy, 2020, 13: 293-299. DOI: 10.2147/JAA.S265697.

43.Pivniouk V, Gimenes Junior JA, Honeker LK, et al. The role of innate immunity in asthma development and protection: lessons from the environment[J]. Clin Exp Allergy, 2020, 50(3): 282-290. DOI: 10.1111/cea.13508.

44.Hirota T, Takahashi A, Kubo M, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population[J]. Nat Genet, 2011, 43(9): 893-896. DOI: 10.1038/ng.887.

45.Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma[J]. N Engl J Med, 2010, 363(13): 1211-1221. DOI: 10.1056/NEJMoa0906312.

46.Peroni DG, Nuzzi G, Trambusti I, et al. Microbiome composition and its impact on the development of allergic diseases[J]. Front Immunol, 2020, 11: 700. DOI: 10.3389/fimmu.2020.00700.

47.Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1[J]. Nat Med, 2014, 20(6): 642-647. DOI: 10.1038/nm.3568.

48.Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development[J]. Cell Host Microbe, 2015, 17(5): 704-715. DOI: 10.1016/j.chom.2015.03.008.

49.Russell SL, Gold MJ, Hartmann M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma[J]. EMBO Rep, 2012, 13(5): 440-447. DOI: 10.1038/embor.2012.32.

50.Sultana RV, McKenzie DP, Fahey MT, et al. Beta-blocker use is an independent risk factor for thunderstorm asthma[J]. Emerg Med Australas, 2019, 31(6): 955-960. DOI: 10.1111/1742-6723. 13275.

51.Nickovic S, Petković S, Ilić L, et al. Prediction of airborne pollen and sub-pollen particles for thunderstorm asthma outbreaks assessment[J]. Sci Total Environ, 2023, 864: 160879. DOI: 10.1016/j.scitotenv.2022.160879.