Objective To investigate the factors affecting initial fracture (IF) in postmenopausal osteoporosis (PMOP).
Methods The clinical data of PMOP patients who visited the department of orthopedics and endocrinology of Xi'an Central Hospital from January 2018 to December 2023 were retrospectively collected, and patients were divided into the IF group and non-fracture (NF) group based on their fracture history. Logistic regression was used to analyze the factors influencing the occurrence of IF in PMOP patients. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to explore the predictive value of relevant indicators.
Results A total of 370 PMOP patients were included, with 256 in the IF group and 114 in the NF group. The incidence of IF was 69.19%. Logistic regression analysis showed that higher Johns Hopkins Fall Risk Assessment Tool (JHFRAT) scores [OR=1.339, 95%CI(1.151, 1.557)], higher neutrophil-to-lymphocyte ratio (NLR) [OR=2.163, 95%CI(1.105, 4.237)], and elevated alkaline phosphatase (ALP) levels [OR=1.014, 95%CI(1.004, 1.024)] were risk factors for IF in PMOP patients. In contrast, living in an urban area [OR=0.333, 95%CI(0.113, 0.984)], higher bone mineral density (BMD) [OR=0.609, 95%CI(0.395, 0.937)], higher systemic immune-inflammation index (SII) [OR=0.998, 95%CI(0.997, 0.999)], and higher uric acid (UA) levels [OR=0.992, 95%CI(0.987, 0.997)] were protective factors. ROC curve analysis showed that the AUC for the combined three indicators (JHFRAT score + NLR + SII) was 0.834 [95% CI (0.792, 0.876)].
Conclusion In PMOP patients, higher JHFRAT scores, NLR, and ALP levels, as well as lower BMD, SII, and UA levels, increase the risk of IF. The combination of JHFRAT score, NLR, and SII has high predictive value for IF.
1.Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women[J]. Osteoporos Int, 2019, 30(1): 3-44. DOI: 10.1007/s00198-018-4704-5.
2.中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022)[J]. 中华内分泌代谢杂志, 2023, 39(5): 377-406. [Chinese Society of Osteoporosis and Bone Mineral Diseases. Guidelines for the diagnosis and treatment of primary osteoporosis (2022)[J]. Chinese Journal of Endocrinology and Metabolism, 2023, 39(5): 377-406.] DOI: 10.3760/cma.j.cn311282-20230321-00122.
3.Bliuc D, Nguyen ND, Nguyen TV, et al. Compound risk of high mortality following osteoporotic fracture and refracture in elderly women and men[J]. J Bone Miner Res, 2013, 28(11): 2317-2324. DOI: 10.1002/jbmr.1968.
4.Zhu X, Chen L, Pan L, et al. Risk factors of primary and recurrent fractures in postmenopausal osteoporotic Chinese patients: a retrospective analysis study[J]. BMC Womens Health, 2022, 21, 22(1): 465. DOI: 10.1186/s12905-022-02034-z.
5.Atik OS, Gunal I, Korkusuz F. Burden of osteoporosis[J]. Clin Orthop Relat Res, 2006, 443: 19-24. DOI: 10.1097/ 01.blo.0000200248.34876.fe.
6.Curry SJ, Krist AH, Owens DK, et al. US preventive services task force. screening for osteoporosis to prevent fractures: US preventive services task force recommendation statement[J]. JAMA, 2018, 319(24): 2521-2531. DOI: 10.1001/jama.2018.7498.
7.黄悦勤. 医学科研中随机误差控制和样本量确定[J]. 中国心理卫生杂志, 2015(11): 874-880. [Huang YQ. Random error control and sample size determination in medical research [J]. Chinese Mental Health Journal, 2015, 29(11): 874-880.] DOI: 10.3969/j.issn.1000-6729.2015. 11.014.
8.蒋雪生,李建有,周国顺,等. 绝经后骨质疏松症发生骨折的影响因素Logistic回归分析[J]. 中华实验外科杂志, 2016, 33(9): 2233-2236. [Jiang XS, Li JY, Zhou GS, et al. Logistic regression analysis on influencing factors of fractures secondary to postmenopausal osteoporosis[J]. Chinese Journal of Experimental Surgery, 2016, 33(9): 2233-2236.] DOI: 10.3760/cma.j.issn.1001-9030.2016. 09.052.
9.van Geel AC, Geusens PP, Nagtzaam IF, et al. Timing and risk factors for clinical fractures among postmenopausal women: a 5-year prospective study[J]. BMC Med, 2006, 4: 24. DOI: 10.1186/1741-7015-4-24.
10.Tuzun S, Akarirmak U, Kulaksiz B, et al. The association of FRAX with predictors of falls in the assessment of postmenopausal osteoporosis in Turkey: the fracture study of Turkey (FRACT study)[J]. Arch Osteoporos, 2024, 19(1): 29. DOI: 10.1007/s11657-024-01387-2.
11.苏琳,杨西宁,曾琪茜,等. 约翰霍普金斯跌倒风险评估工具的特点及其在临床中的应用进展[J]. 护理实践与研究, 2023, 20(9): 1304-1309. [Su L, Yang XN, Zeng QQ, et al. Characteristics of Johns Hopkins fall risk assessment tool and its clinical application[J]. Nursing Practice and Research, 2023, 20(9): 1304-1309.] DOI: 10.3969/j.issn.1672-9676.2023.09.008.
12.李云靖,段军富,孙超,等. 骨质疏松症药物治疗中发生椎体骨折的危险因素[J]. 颈腰痛杂志, 2023, 44(5): 771-774. [LI YJ, Duan JF, Sun C, et al. Risk factors for vertebral fracture in drug treatment of osteoporosis[J]. The Journal of Cervicodynia and Lumbodynia, 2023, 44(5): 771-774.] DOI: 10.3969/j.issn.1005-7234.2023.05.018.
13.Milanova V, Ivanovska N, Dimitrova P. TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice[J]. Mediators Inflamm, 2014, 2014: 643406. DOI: 10.1155/2014/643406.
14.宋云霄,童巍,张海晨,等. 系统性炎症指标与老年骨质疏松症患者骨折发生的相关性[J]. 检验医学, 2022, 37(3): 235-239. [Song YX, Tong W, Zhang HC, et al. Correlation between systemic inflammation markers and fracture occurrence in elderly patients with osteoporosis[J]. Laboratory Medicine, 2022, 37(3): 235-239.] DOI: 10.3969/j.issn.1673-8640.2022.03.009.
15.段克友,刘翔宇,熊风,等. 绝经后骨质疏松症患者发生骨质疏松性椎体压缩骨折危险因素分析[J]. 山东医药, 2021, 61(24): 34-38. [Duan KY, Liu XY, Xiong F, et al. Risk factors of osteoporotic vertebral compression fracture in postmenopausal osteoporosis patients[J]. Shandong Medical Journal, 2021, 61(24): 34-38.] DOI: 10.3969/j.issn.1002-266X.2021.24.008.
16.Yamamoto S, Jørgensen HS, Zhao J, et al. Alkaline phosphatase and parathyroid hormone levels: international variation and associations with clinical outcomes in the DOPPS[J]. Kidney Int Rep, 2024, 9(4): 863-876. DOI: 10.1016/j.ekir.2024.01.002.
17.Xia P, Jiang Y, Cai F, et al. Construction and verification of risk prediction model of osteoporotic fractures in patients with osteoporosis in China[J]. Front Public Health, 2024, 12: 1380218. DOI: 10.3389/fpubh.2024.1380218.
18.Tabor E, Grodzki A, Pluskiewicz W. Higher education and better knowledge of osteoporosis improve bone health in Polish postmenopausal women[J]. Endokrynol Pol, 2022, 73(5): 831-836. DOI: 10.5603/EP.a2022.0055.
19.刘苇霖. 绍兴市城乡居民骨质疏松防治知识获得途径及知晓率分析[J]. 中国农村卫生事业管理, 2018, 38(12): 1576-1578. [Liu WL. Analysis of access to osteoporosis prevention knowledge and awareness rate of urban and rural residents in Shaoxing City[J]. Chinese Rural Health Service Administration, 2018, 38(12): 1576-1578.] DOI: 10.3969/j.issn.1005-5916.2018.12.023.
20.Gold DT, McClung B. Approaches to patient education: emphasizing the long-term value of compliance and persistence[J]. Am J Med, 2006, 119(4 Suppl 1): S32-S37. DOI: 10.1016/j.amjmed.2005.12.021.
21.Julián-Almárcegui C, Gómez-Cabello A, Huybrechts I, et al. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: a systematic review[J]. Nutr Rev, 2015, 73(3): 127-139. DOI: 10.1093/nutrit/nuu065.
22.王敏,王龙胜,陈磊. 骨质疏松症患者腰椎骨折预测模型的构建[J]. 天津医药, 2024, 52(7): 766-769. [Wang M, Wang LS, Chen L. Construction of a prediction model for lumbar vertebral fracture in patients with osteoporosis[J]. Tianjin Medical Journal, 2024, 52(7): 766-769.] DOI: 10.11958/20231883.
23.Iconaru L, Moreau M, Kinnard V, et al. Does the prediction accuracy of osteoporotic fractures by BMD and clinical risk factors vary with fracture site?[J]. JBMR Plus, 2019, 3(12): e10238. DOI: 10.1002/jbm4.10238.
24.Gregson CL, Armstrong DJ, Bowden J, et al. UK clinical guideline for the prevention and treatment of osteoporosis[J]. Arch Osteoporos, 2022, 17(1): 58. DOI: 10.1007/s11657-022-01061-5.
25.LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician's guide to prevention and treatment of osteoporosis[J]. Osteoporos Int, 2022, 33(10): 2049-2102. DOI: 10.1007/s00198-021-05900-y.
26.Di D, Zhou H, Cui Z, et al. Frailty phenotype as mediator between systemic inflammation and osteoporosis and fracture risks: a prospective study[J]. J Cachexia Sarcopenia Muscle, 2024, 15(3): 897-906. DOI: 10.1002/jcsm.13447.
27.Fang H, Zhang H, Wang Z, et al. Systemic immune-inflammation index acts as a novel diagnostic biomarker for postmenopausal osteoporosis and could predict the risk of osteoporotic fracture[J]. J Clin Lab Anal, 2020, 34(1): e23016. DOI: 10.1002/jcla.23016.
28.Lin Z, Shen D, Zhou W, et al. Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration[J]. Bioact Mater, 2021, 23, 6(8): 2315-2330. DOI: 10.1016/j.bioactmat.2021.01.018.
29.Caputa G, Castoldi A, Pearce EJ. Metabolic adaptations of tissue-resident immune cells[J]. Nat Immunol, 2019, 20(7): 793-801. DOI: 10.1038/s41590-019-0407-0.
30.Fabbrini E, Serafini M, Colic Baric I, et al. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects[J]. Diabetes, 2014, 63: 976-981. DOI: 10.2337/db13-1396.
31.Ahn SH, Lee SH, Kim BJ, et al. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women[J]. Osteoporos Int, 2013, 24(12): 2961-2970. DOI: 10.1007/s00198-013-2377-7.
32.Yin P, Lv H, Li Y, et al. The association between serum uric acid level and the risk of fractures: a systematic review and Meta-analysis[J]. Osteoporos Int, 2017, 28(8): 2299-2307. DOI: 10.1007/s00198-017-4059-3.
33.Yan P, Zhang Z, Wan Q, et al. Association of serum uric acid with bone mineral density and clinical fractures in Chinese type 2 diabetes mellitus patients: a cross-sectional study[J]. Clin Chim Acta, 2018, 486: 76-85. DOI: 10.1016/j.cca.2018.07.033.
34.何丽,李皓雲,秦贵军,等. 2型糖尿病绝经后女性患者血尿酸水平与骨密度和骨折的相关性研究 [J]. 中国骨质疏松杂志, 2019, 25(6): 799-803, 836. [He L, Li HY, Qin GJ, et al. Correlation between serum uric acid level and bone mineral density and fracture in postmenopausal women with type 2 diabetes[J]. Chinese Journal of Osteoporosis, 2019, 25(6): 799-803, 836.] DOI: 10.3969/j.issn.1006-7108.2019.06.014.