Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress of nanomaterials for the diagnosis and treatment of  pancreatitis

Published on Jun. 01, 2024Total Views: 320 timesTotal Downloads: 320 timesDownloadMobile

Author: OUYANG Bingqing LI Yunfeng QI Luyao XU Kailiang

Affiliation: Department of Critical Care Medicine, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Keywords: Pancreatitis Nanomaterials Diagnostic and treatment technology

DOI: 10.12173/j.issn.1004-5511.202310022

Reference: Ouyang BQ, Li YF, Qi LY, Xu KL. Research progress of nanomaterials for the diagnosis and treatment of pancreatitis[J]. Yixue Xinzhi Zazhi, 2024, 34(5): 564-571. DOI: 10.12173/j.issn.1004-5511.202310022.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Bad habits such as alcoholism and overeating have led to an increasing prevalence of pancreatitis, which carries a serious disease burden. At present, the connection between nanotechnology and medical research is becoming increasingly close, and many new techniques for the diagnosis and treatment of pancreatitis have been proposed based on nanotechnology. We summarise the indicators of organic, inorganic and bionic cell membrane nano in the diagnosis of various enzymes and in the treatment of acute and chronic pancreatitis. A collated discussion is presented to further explore the diagnostic mechanism of pancreatitis and to provide theoretical support for promoting the conversion of products to clinical applications.

Full-text
Please download the PDF version to read the full text: download
References

1.Sundar V, Senthil Kumar KA, Manickam V, et al. Current trends in pharmacological approaches for treatment and management of acute pancreatitis: a review[J]. J Pharm Pharmacol, 2020, 72(6): 761-775. DOI: 10.1111/jphp.13229.

2.Gibo J, Ito T, Kawabe K, et al. Camostat mesilate attenuates pancreatic fibrosis via inhibition of monocytes and pancreatic stellate cells activity[J]. Lab Invest, 2005, 85(1): 75-89. DOI: 10.1038/labinvest. 3700203.

3.Caracciolo G, Caputo D, Pozzi D, et al. Size and charge of nanoparticles following incubation with human plasma of healthy and pancreatic cancer patients[J]. Colloids Surf B Biointerfaces, 2014, 123: 673-678. DOI: 10.1016/j.colsurfb.2014.10.008.

4.Mederos MA, Reber HA, Reber HA. Acute pancreatitis: a review[J]. JAMA, 2021, 325(4): 382-390. DOI: 10.1001/jama.2020.20317.

5.Singh VK, Yadav D, Garg PK. Diagnosis and management of chronic pancreatitis: a review[J]. JAMA, 2019, 322(24): 2422-2434. DOI: 10.1001/jama.2019.19411.

6.Ramakrishnan P, Loh WM, Gopinath SCB, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer[J]. Acta Pharm Sin B, 2020, 10(3): 399-413. DOI: 10.1016/j.apsb.2019.11.008.

7.Viegas C, Patrício AB, Prata J, et al. Advances in pancreatic cancer treatment by nano-based drug delivery systems[J]. Pharmaceutics, 2023, 15(9): 2363. DOI: 10.3390/pharmaceutics15092363.

8.Xia M, Wang Q, Liu Y, et al. Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy[J]. Nat Commun, 2024, 15(1): 460. DOI: 10.1038/s41467-024-44736-y.

9.Kimura A, Arai T, Ueno M, et al. Synthesis of small peptide nanogels using radiation crosslinking as a platform for nano-imaging agents for pancreatic cancer diagnosis[J]. Pharmaceutics, 2022, 14(11): 2400. DOI: 10.3390/pharmaceutics14112400.

10.Liu L, Kshirsagar PG, Gautam SK, et al. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies[J]. Theranostics, 2022, 12(3): 1030-1060. DOI: 10.7150/thno.64805.

11.Jia X, Lyu M, Fei Y, et al. Facile one-step synthesis of NIR-Responsive siRNA-inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy[J]. Biomaterials, 2022, 282: 121404. DOI: 10.1016/j.biomaterials.2022.121404.

12.Zhang G, Li N, Qi Y, et al. Synergistic ferroptosis-gemcitabine chemotherapy of the gemcitabine loaded carbonaceous nanozymes to enhance the treatment and magnetic resonance imaging monitoring of pancreatic cancer[J]. Acta Biomater, 2022, 142: 284-297. DOI: 10.1016/j.actbio.2022.02.006.

13.Edgington-Mitchell LE, Wartmann T, Fleming AK, et al. Legumain is activated in macrophages during pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311(3): G548-G560. DOI: 10.1152/ajpgi.00047.2016.

14.Sun X, Feng Z, Zhang L, et al. The selective interaction between silica nanoparticles and enzymes from molecular dynamics simulations[J]. PloS One, 2014, 9(9): e107696. DOI: 10.1371/journal.pone.0107696.

15.Attia MS, Al-Radadi NS. Progress of pancreatitis disease biomarker alpha amylase enzyme by new nano optical sensor[J]. Biosens Bioelectron, 2016, 86: 413-419. DOI: 10.1016/j.bios.2016.06.079.

16.Shi J, Deng Q, Li Y, et al. A rapid and ultrasensitive tetraphenylethylene-based probe with aggregation-induced emission for direct detection of α-amylase in human body fluids[J]. Anal Chem, 2018, 90(22): 13775-13782. DOI: 10.1021/acs.analchem.8b04244.

17.Shi J, Deng Q, Li Y, et al. An aggregation-induced emission probe based on host-guest inclusion composed of the tetraphenylethylene motif and γ-cyclodextrin for the detection of α-amylase[J]. Chem Asian J, 2019, 14(6): 847-852. DOI: 10.1002/asia.201801601.

18.Hou S, Feng T, Zhao N, et al. A carbon nanoparticle-peptide fluorescent sensor custom-made for simple and sensitive detection of trypsin[J]. J Pharm Anal, 2020, 10(5): 482-489. DOI: 10.1016/j.jpha.2020.08.009.

19.Buchler M, Malfertheiner P, Schadlich H, et al. Role of phospholipase A2 in human acute pancreatitis[J]. Gastroenterology, 1989, 67(3): 180-182. DOI: 10.1016/0016-5085(89)90398-3.

20.Nevalainen TJ. Serum phospholipases A2 in inflammatory diseases[J]. Clin Chem, 1993, 39(12): 2453-2459. DOI: 10.1159/10.1159/000075470.

21.Chapman R, Lin Y, Burnapp M, et al. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase A2 in serum[J]. ACS nano, 2015, 9(3): 2565-2573. DOI: 10.1021/nn5057595.

22.Long L, Deng L, Wang L, et al. P-selectin-based dual-model nanoprobe used for the specific and rapid visualization of early detection toward severe acute pancreatitis in vivo[J]. ACS Biomater Sci Eng, 2020, 6(10): 5857-5865. DOI: 10.1021/acsbiomaterials.0c00596.

23.Li Y, Yin B, Song Y, et al. A novel ROS-related chemiluminescent semiconducting polymer nanoplatform for acute pancreatitis early diagnosis and severity assessment[J]. J Nanobiotechnology, 2023, 21(1): 173. DOI: 10.1186/s12951-023-01937-9.

24.Abraham T, McGovern CO, Linton SS, et al. Aptamer-targeted calcium phosphosilicate nanoparticles for effective imaging of pancreatic and prostate cancer[J]. Int J Nanomedicine, 2021, 16: 2297-2309. DOI: 10.2147/IJN.S295740.

25.Luo X, Hu D, Gao D, et al. Metabolizable near-infrared-II nanoprobes for dynamic imaging of deep-seated tumor-associated macrophages in pancreatic cancer[J]. ACS Nano, 2021, 15(6): 10010-10024. DOI: 10.1021/acsnano.1c01608.

26.Brachi G, Bussolino F, Ciardelli G, et al. Nanomedicine for imaging and therapy of pancreatic adenocarcinoma[J]. Front Bioeng Biotechnol, 2019, 7: 307. DOI: 10.3389/fbioe.2019.00307.

27.Hu X, Xia F, Lee J, et al. Tailor-made nanomaterials for diagnosis and therapy of pancreatic ductal adenocarcinoma[J]. Adv Sci (Weinh), 2021, 8(7): 2002545. DOI: 10.1002/advs.202002545.

28.Chen W, Liu X, Li Y, et al. Preparation and in vitro evaluation of a nano ultrasound contrast agent targeting pancreatic cancer[J]. J Nanosci Nanotechnol, 2021, 21(3): 1413-1418. DOI: 10.1166/jnn.2021.18883.

29.Kumar Shukla M, Parihar A, Karthikeyan C, et al. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer[J]. Nanoscale, 2023, 15(36): 14698-14716. DOI: 10.1039/d3nr03161f.

30.Lee W, Il An G, Park H, et al. Imaging strategy that achieves ultrahigh contrast by utilizing differential esterase activity in organs: application in early detection of pancreatic cancer[J]. ACS Nano, 2021, 15(11): 17348-17360. DOI: 10.1021/acsnano.1c05165.

31.Marko AJ, Dukh M, Patel NJ, et al. A pyropheophorbide analogue containing a fused methoxy cyclohexenone ring system shows promising cancer-imaging ability[J]. ChemMedChem, 2019, 14(16): 1503-1513. DOI: 10.1002/cmdc.201900352.

32.Zhang X, Detering L, Sultan D, et al. CC chemokine receptor 2-targeting copper nanoparticles for positron emission tomography-guided delivery of gemcitabine for pancreatic ductal adenocarcinoma[J]. ACS Nano, 2021, 15(1): 1186-1198. DOI: 10.1021/acsnano.0c08185.

33.Liu J, Cabral H, Song B, et al. Nanoprobe-based magnetic resonance imaging of hypoxia predicts responses to radiotherapy, immunotherapy, and sensitizing treatments in pancreatic tumors[J]. ACS Nano, 2021, 15(8): 13526-13538. DOI: 10.1021/acsnano.1c04263.

34.Wang L, Yin H, Bi R, et al. ENO1-targeted superparamagnetic iron oxide nanoparticles for detecting pancreatic cancer by magnetic resonance imaging.[J]. J Cell Mol Med, 2020, 24(10): 5751-5757. DOI: 10.1111/jcmm.15237.

35.Abdel Aal SM, Ahmed SM, Abdelrahman SA, et al. Duration-dependent effects induced by titanium dioxide nanoparticles on pancreas of adult male albino rats (histological and biochemical study)[J]. Ultrastruct Pathol, 2020, 44(4-6): 342-358. DOI: 10.1080/01913123.2020.1786203.

36.Fan JJ, Mei QX, Deng GY, et al. Porous SiO2  -coated ultrasmall selenium particles nanospheres attenuate cerulein-induce acute pancreatitis in mice by downregulating oxidative stress[J]. J Dig Dis, 2021, 22(6): 363-372. DOI: 10.1111/1751-2980.12989.

37.Khurana A, Anchi P, Allawadhi P, et al. Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis[J]. Nanomedicine (Lond), 2019, 14(14): 1805-1825. DOI: 10.2217/nnm-2018-0318.

38.Xie P, Zhang L, Shen H, et al. Biodegradable MoSe2-polyvinylpyrrolidone nanoparticles with multi-enzyme activity for ameliorating acute pancreatitis[J]. J Nanobiotechnology, 2022, 20(1): 113. DOI: 10.1186/s12951-022-01288-x.

39.Shahin NN, Shamma RN, Ahmed IS. A nano-liposomal formulation of caffeic acid phenethyl ester modulates nrf2 and nf-κβ signaling and alleviates experimentally induced acute pancreatitis in a rat model[J]. Antioxidants (Basel), 2022, 11(8): 1536. DOI: 10.3390/antiox11081536.

40.Yao Q, Jiang X, Zhai YY, et al. Protective effects and mechanisms of bilirubin nanomedicine against acute pancreatitis[J]. J Control Release, 2020, 322: 312-325. DOI: 10.1016/j.jconrel.2020.03.034.

41.Chen Y, Tao H, Chen R, et al. Biomimetic nanoparticles loaded with ulinastatin for the targeted treatment of acute pancreatitis[J]. Mol Pharm, 2023, 20(8): 4108-4119. DOI: 10.1021/acs.molpharmaceut. 3c00238.

42.Zhang Q, Zhou J, Zhou J, et al. Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis[J]. Nat Commun, 2021, 12(1): 4136. DOI: 10.1038/s41467-021-24447-4.

43.Zhou X, Cao X, Tu H, et al. Inflammation-targeted delivery of celastrol via neutrophil membrane-coated nanoparticles in the management of acute pancreatitis[J]. Mol Pharm, 2019, 16(3): 1397-1405. DOI: 10.1021/acs.molpharmaceut.8b01342.

44.Chegini M, Sadeghi A, Zaeri F, et al. Nano-curcumin supplementation in patients with mild and moderate acute pancreatitis: a randomized, placebo-controlled trial[J]. Phytother Res, 2023, 37(11): 5279-5288. DOI: 10.1002/ptr.7958.

45.Chuang EY, Lin KJ, Huang TY, et al. An intestinal "Transformers"-like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs[J]. ACS nano, 2018, 12(7): 6389-6397. DOI: 10.1021/acsnano.8b00470.

46.Wang Y, Li Y, Gao S, et al. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice[J]. Nano Letters, 2022, 22(4): 1759-1768. DOI: 10.1021/acs.nanolett.1c05003.

47.Wan L, Lin KT, Rahman MA, et al. Splicing factor SRSF1 promotes pancreatitis and KRASG12D-mediated pancreatic cancer[J]. Cancer Discov, 2023, 13(7): 1678-1695. DOI: 10.1158/2159-8290.Cd-22-1013.

48.Wang F, Deng Y, Yu L, et al. A macrophage membrane-polymer hybrid biomimetic nanoplatform for therapeutic delivery of somatostatin peptide to chronic pancreatitis[J]. Pharmaceutics, 2022, 14(11): 2341. DOI: 10.3390/pharmaceutics14112341.

49.Aydemir D, Gecili F, Özdemir N, et al. Synthesis and characterization of a triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) as a combination of three pancreatic digestive enzymes amylase, protease and lipase[J]. J Biosci Bioeng, 2020, 129(6): 679-686. DOI: 10.1016/j.jbiosc.2020.01.008.