Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors in the world. Current treatment involves a combination of surgery, radiotherapy and chemotherapy. However, novel therapy methods are urgently needed to improve its 5-years survival rate and poor prognosis. The exploration of the complex relationships within the tumor immune microenvironment has led to various clinical trials related to immunotherapy which have attracted much attention, including the application of dendritic cells. Dendritic cells are natural antigen-presenting cells that can stimulate anti-tumor immune responses. Encouraging work has been carried out using these cells as vaccines against some tumors. This review aims to introduce the progress in research into dendritic cell related therapy for HNSCC.
HomeArticlesVol 31,2021 No.3Detail
Research advances into the use of dendritic cells in head and neck squamous cell car-cinoma therapy
Published on May. 26, 2021Total Views: 6566 timesTotal Downloads: 2479 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1. GBD 2016 disease and injury incidence and prevalence collaborators. Lobal, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. The Lancet, 2017, 390(10100): 1211-1259. DOI: 10.1016/S0140-6736(17)32154-2.
2. Macri C, Pang ES, Patton T, et al. Dendritic cell subsets[J]. Semin Cell Dev Biol, 2018, 84: 11-21. DOI: 10.1016/j. semcdb.2017.12.009.
3. Merad M, Sathe P, Helft J, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting[J]. Annu Rev Immunol, 2013, 31: 563-604. DOI: 10.1146/annurev-immunol-020711-074950.
4. Gardner A, Ruffell B. Dendritic cells and cancer immunity[J]. Trends Immunol, 2016, 37(12): 855-865. DOI: 10.1016/j.it.2016.09.006.
5. Yin X, Chen S, Eisenbarth SC. Dendritic cell regulation of t helper cells[J]. Annu Rev Immunol, 2021. DOI: 10.1146/annurev-immunol-101819-025146.
6. Wang Y, Xiang Y, Xin VW, et al. Dendritic cell biology and its role in tumor immunotherapy[J]. J Hematol Oncol, 2020, 13(1): 107. DOI: 10.1186/s13045-020-00939-6.
7. Barry KC, Hsu J, Broz ML, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments[J]. Nat Med, 2018, 24(8): 1178-1191. DOI: 10.1038/s41591-018-0085-8.
8. Tang M, Diao J, Gu H, et al. Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL-10 receptor signaling[J]. Cell Rep, 2015, 13(12): 2851-2864. DOI: 10.1016/j.celrep. 2015.11.053.
9. Wculek SK, Cueto FJ, Mujal AM, et al. Dendritic cells in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2020, 20(1): 7-24. DOI: 10.1038/s41577-019-0210-z.
10. Nagata M, Kosaka A, Yajima Y, et al. A critical role of STING-triggered tumor-migrating neutrophils for anti-tumor effect of intratumoral cGAMP treatment[J]. Cancer Immunol Immunother, 2021. DOI: 10.1007/s00262-021-02864-0.
11. Truxova I, Kasikova L, Hensler M, et al. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients[J]. J Immunother Cancer, 2018, 6(1): 139. DOI: 10.1186/s404 25-018-0446-3.
12. Lee JM, Lee MH, Garon E, et al. Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8(+) T-cell infiltration[J]. Clin Cancer Res, 2017, 23(16): 4556-4568. DOI: 10.1158/1078-0432.CCR-16-2821.
13. Ning Y, Shen K, Wu Q, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response[J]. Immunol Lett, 2018, 199: 36-43. DOI: 10. 1016/j.imlet.2018.05.002.
14. Legitimo A, Consolini R, Failli A, et al. Dendritic cell defects in the colorectal cancer[J]. Hum Vaccin Immunother, 2014, 10(11): 3224-3235. DOI: 10.4161/hv.29857.
15. Hubo M, Trinschek B, Kryczanowsky F, et al. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells[J]. Front Immunol, 2013, 4: 82. DOI: 10.3389/fimmu.2013.00082.
16. SSantegoets SJ, Duurland CL, Jordanova EJ, et al. CD163(+) cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer[J]. J Immunother Cancer, 2020, 8(2): e001053. DOI: 10.1136/jitc-2020-001053.
17. Poropatich K, Dominguez D, Chan WC, et al. OX40+ plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity[J]. J Clin Invest, 2020, 130(7): 3528-3542. DOI: 10.1172/JCI131992.
18. Jardim JF, Gondak R, Galvis MM, et al. A decreased peritumoral CD1a+ cell number predicts a worse prognosis in oral squamous cell carcinoma[J]. Histopathology, 2018, 72(6): 905-913. DOI: 10.1111/his.13415.
19. Costa NL, Goncalves AS, Martins AF, et al. Characterization of dendritic cells in lip and oral cavity squamous cell carcinoma[J]. J Oral Pathol Med, 2016, 45(6): 418-424. DOI: 10.1111/jop.12380.
20. Yang Z, Li X, Li J, et al. TPPP3 associated with prognosis and immune infiltrates in head and neck squamous carcinoma[J]. Biomed Res Int, 2020, 2020: 3962146. DOI: 10.1155/2020/3962146.
21. Hoffmann TK, Müller-Berghaus J, Ferris RL, et al. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck[J]. Clin Cancer Res, 2002, 8(6): 1787-1793. DOI: 10.1093/carcin/23.6.1089.
22. Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer[J]. Clin Cancer Res, 2000, 6(5): 1755-1766. DOI: 10.1159/000007283.
23. Yu X, Liu W, Chen S, et al. Immunologically programming the tumor microenvironment induces the pattern recognition receptor NLRC4-dependent antitumor immunity[J]. J Immunother Cancer, 2021, 9(1): e001595. DOI: 10.1136/jitc-2020-001595.
24. Bommareddy PK, Patel A, Hossain S, et al. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma[J]. Am J Clin Dermatol, 2017, 18(1): 1-15. DOI: 10.1007/s40257-016-0238-9.
25. Yan WL, Shen KY, Tien CY, et al. Recent progress in GM-CSF-based cancer immunotherapy[J]. Immunotherapy, 2017, 9(4): 347-360. DOI: 10.2217/imt-2016-0141.
26. Finn OJ. Human tumor antigens yesterday, today, and tomorrow[J]. Cancer Immunol Res, 2017, 5(5): 347-354. DOI: 10.1158/2326-6066.CIR-17-0112.
27. Chiang CL, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: where are we?[J]. Vaccines (Basel), 2015, 3(2): 344-372. DOI: 10.3390/vaccines3020344.
28. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy[J]. Science, 2018, 359(6382): 1355-1360. DOI: 10.1126/science.aar7112.
29. Goyvaerts C, Breckpot K. The journey of in vivo virus engineered dendritic cells from bench to bedside: a bumpy road[J]. Front Immunol, 2018, 9: 2052. DOI: 10.3389/fimmu.2018.02052.
30. Schuler PJ, Harasymczuk M, Visus C, et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer[J]. Clin Cancer Res, 2014, 20(9): 2433-2444. DOI: 10.1158/1078-0432.CCR-13-2617.
31. Ogasawara M, Miyashita M, Yamagishi Y, et al. Phase I/II pilot study of wilms' tumor 1 peptide-pulsed dendritic cell vaccination combined with conventional chemotherapy in patients with head and neck cancer[J]. Ther Apher Dial, 2019, 23(3): 279-288. DOI: 10.1111/1744-9987.12831.
32. Chia WK, Wang WW, Teo M, et al. A phase II study evaluating the safety and efficacy of an adenovirus-DeltaLMP1-LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma[J]. Ann Oncol, 2012, 23(4): 997-1005. DOI: 10.1093/annonc/mdr341.
33. Fu C, Zhou L, Mi QS, et al. DC-based vaccines for cancer immunotherapy[J]. Vaccines (Basel), 2020, 8(4): 706. DOI: 10.3390/vaccines8040706.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20242493
-
Development situation and expert suggestion on "Internet+Traditional Chinese Medicine" in China
Jun. 01, 20242186
-
Analysis of the relationship between home skin care associated factors and disease severity for children with atopic dermatitis
Jun. 01, 20241939
-
Mechanism of ALKBH5 mediated m6A regulation of Galectin-9 in the invasion, migration, and proliferation of endometrial stromal cell
Jun. 01, 20241760
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20241584
-
Analysis of the disease burden of benign prostatic hyperplasia in China, the United States and Germany at 1990 and 2019
Jun. 01, 20241502
-
Risk factors and prediction model construction for poor outcome in asthma combined with severe community-acquired pneumonia in children
Jun. 01, 20241480
-
Relationship and potential mechanisms between gut microbiota and benign prostatic hyperplasia
Jun. 01, 20241327