2023年全球30~79岁成年人高血压患病率约为33%[1]。全球19岁以下儿童青少年高血压合并患病率为4.0%,高血压前期合并率为9.67%[2]。高血压及其所致的脑卒中、缺血性心脏病等疾病将导致较高的疾病负担和健康损失[3]。高血压是遗传、生活方式、环境暴露等多因素共同作用的结果[4],近年来,因环境暴露所致的血压水平改变已成为人们关注的焦点。多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是有机物不完全燃烧的产物[5],消化道、呼吸道及皮肤接触是人体暴露于PAHs的主要途径[6]。氧化应激增加、血管收缩、内皮功能障碍和昼夜节律改变被认为是PAHs影响血压或心血管病的主要机制[7]。目前,国内外对于PAHs暴露与血压关联的流行病学研究结果仍有差异。有研究表明高水平的PAHs暴露与高血压风险呈正相关[8]。一项对于居住在炼油厂附近儿童的调查显示,尿中总羟基菲与儿童收缩压和舒张压无任何关联[9]。因此,本研究旨在对PAHs暴露与血压的关系进行系统评价与Meta分析,为进一步探讨环境暴露与血压的关联提供新的线索,为早期预防高血压提供科学依据。
1 资料与方法
1.1 纳入与排除标准
纳入标准 :①研究主题:PAHs暴露与血压的关联;②研究对象:全人群,性别不限;③暴露因素为PAHs;④结局指标为收缩压、舒张压、高血压风险;⑤研究设计为队列研究、横断面研究。排除标准:①非人群研究(如动物);②未报告PAHs暴露与血压的关联;③研究设计不符(如会议摘要、综述、书信、新闻、评论、社论、项目介绍、文献目录和会议摘要等研究文献);④重复发表文献;⑤非中英文文献。
1.2 文献检索策略
计算机检索中国知网、万方数据库、中国生物医学数据库、维普中文科技期刊数据库、OVID、PubMed、Web of Science、EBSCO数据库。检索时限均为各数据库建库至2025年7月25日。中文检索词包括:①多环芳烃、芘、芴、萘、菲、荧蒽、苊、苯并芘、苯并蒽;②血压、收缩压、舒张压、高血压。英文检索词为:①polycyclic aromatic hydrocarbons,PAHs,Pyrene,Fluorene,Naphthalene,Phenanthrene,Fluoranthene,Acenaphthene,Benzopyrene,polynuclear aromatic hydrocarbons,benzanthracene;②blood pressure,systolic blood pressure,diastolic blood pressure,hypertension。以PubMed为例,具体检索策略见框1。
-
框图1 PubMed检索策略
Box1.PubMed search strategy
1.3 文献筛选与资料提取
由2名研究者独立筛选文献、提取资料并交叉核对。如有分歧,通过讨论或与第三方协商解决。提取内容包括:①研究基本信息(研究地区和年份、样本来源、研究设计类型等);②研究对象的基本特征(年龄、性别、样本量等);③PAHs的种类、采样途径、暴露对象及检测时间等;④血压及其测量方式等;⑤PAHs与血压的关联指标及其数据。
1.4 纳入研究的偏倚风险评价
采用NOS量表(the Newcastle-Ottawa Scale)评价纳入队列研究的偏倚风险,每个条目1分,总分9分,评分≥7分为高质量研究。采用美国卫生保健研究和质量机构(Agency for Healthcare Research and Quality,AHRQ)的评价标准对横断面研究进行质量评价,共11个条目,总分11分,评分≥8分为高质量文献。正式评价时,由2名研究者独立完成质量评价,并交叉核对评价结果,如有分歧经讨论或参考第三方意见解决。
1.5 统计学分析
使用RevMan 5.4软件对二分类数据进行Meta分析,各研究间的异质性采用卡方检验P值和I2指数进行判定:若P>0.1,I2≤50%,表示各研究间异质性小,采用固定效应模型进行Meta分析;若P≤0.1,I2>50%,表示各研究间异质性大,采用随机效应模型进行Meta分析。若纳入研究在PAHs种类、采样途径、结局指标等方面存在较大的异质性,则按照结局指标分别描述和归纳PAHs暴露与血压的关联。
2 结果
2.1 文献筛选流程及结果
初检出相关文献5 728篇,经逐层筛选后,最终纳入41篇文献,涉及9项队列研究[10-15, 41- 43]、32项横断面研究[7-8, 16-40, 44-48]。文献筛选流程及结果见图1。
-
图1 文献筛选流程图
Figure1.Flow chart of literature screening
注:*检索的数据库及检出文献数具体为:PubMed(n=2 224)、OVID(n=13)、EBSCO(n=115)、Web of Science(n=1 188)、CBM(n=1 232)、VIP(n=242)、WanFang Data(n=490)、CNKI(n=224)。
2.2 纳入研究的基本特征及质量评价结果
纳入的41项研究中,涉及成人36项 [7- 8, 10- 11, 13, 15-22, 24-29, 31-41, 43-44, 46-48],儿童青少年6项 [12, 14, 23, 30, 42, 45]。纳入的队列研究NOS评分为5~ 9分,横断面研究AHRQ评分为6~10分。纳入队列研究和横断面研究的基本特征及质量评价结果见附件表1和表2。
2.3 PAHs暴露与高血压的关联与Meta分析
纳入的41项研究中,共24项报告了PAHs暴露与高血压风险的关联。其中,3项队列研究 [13-15]均表明PAHs暴露是高血压的危险因素。横断面研究中多数研究表明PAHs暴露是增加高血压风险的危险因素,而Peng等[46]的研究发现3-羟基菲、6-羟基菊烯+11-羟基苯并[a]蒽与女性高血压风险降低相关,仅Xu等[31]的研究未发现PAHs暴露与高血压的关联,详见附件表2。
根据3项研究[34, 37-38]进行的Meta分析结果显示,苯并[a]芘暴露组发生高血压的风险是对照组的1.44倍[95%CI(1.15,1.80)],见附件图1。
2.4 PAHs暴露与收缩压和舒张压的关联
2.4.1 PAHs暴露与收缩压的关联
7项队列研究探讨了PAHs暴露与收缩压的关联,其中5项研究[11-12, 14, 41, 43]观察到PAHs暴露与收缩压之间呈正相关;Feng等[10]开展的半纵向研究虽然发现PAHs通过睾酮水平间接影响血压,但在高睾酮水平亚组中却未观察到PAHs暴露与收缩压的显著相关性;而一项在孟加拉国开展的研究并未发现PAHs暴露与儿童收缩压的关联[42],见附件表1。
10项横断面研究报告了PAHs暴露与收缩压的关联,其中周莉[7]分别基于美国NHANES数据库及中国煤矿工人开展的2项研究发现,2-羟基萘、2-羟基芴、3-羟基芴与美国人群收缩压呈正相关,但9-羟基菲、1-羟基芘与中国煤矿工人的收缩压呈负相关;另有4项研究[26-27, 39, 44-45]报告PAHs暴露与收缩压呈正相关;2项研究[25, 30]报告为负相关;2项研究[18, 28]未发现PAHs暴露与收缩压的关联,见附件表2。
2.4.2 PAHs暴露与舒张压的关联
7项队列研究报告了PAHs暴露与舒张压的关联,其中5项研究发现PAHs暴露与舒张压升高有关[10, 12, 14, 41, 43];而Jacobs等[11]的研究发现附着在颗粒物上的PAHs与舒张压之间呈负相关;Trask等[42]的研究也发现∑OH-PAHs与儿童舒张压呈显著负相关;此外,殷文军等[14]的研究指出尿OH-PAHs浓度对血压值的影响呈现滞后效应,肥胖指标(BMI、腰围)会对PAHs暴露与血压关联产生中介效应。
12项横断面研究报告的结果存在较大异质性,其中5项报告为正相关 [16, 23, 26, 28, 45];而周莉开展的2项研究均发现1- 羟基芘暴露与舒张压呈负相关[7],与Sancini等 [25]的研究一致;此外,还有4项研究[18, 39, 44, 47]未发现两者之间的关联,见附件表2。
3 讨论
目前,关于PAHs暴露对儿童青少年血压影响的队列研究较少,仅1项研究发现PAHs尿液羟基代谢物与4~13岁儿童收缩压及舒张压的升高有关[12]。而横断面研究结果尚不一致,有研究发现母亲产前接触PAHs与儿童血压升高显著相关[45],而PAHs暴露会通过减少体内的抗氧化剂导致儿童血压下降[30]。目前报道PAHs暴露与儿童青少年血压关联的研究较少,且不同的PAHs采样途径和研究对象年龄段的选取也可能导致结果存在差异,因此,两者之间是否存在关联仍需开展高质量的队列研究予以证实。
有关PAHs暴露对成人血压的影响的研究结果尚不一致,这可能与接触的PAHs种类、接触时间[49]和暴露环境[50]等有关。对焦炉工人而言,其更易暴露在高浓度的PAHs环境下,其尿1-羟基芘的浓度及蓄积量更多,高血压患病率更高 [15];对于老年人来说,附着在空气颗粒物上的含氧PAHs与其收缩压和脉压升高有关,但与舒张压呈负相关[11],此外尿∑OH-PAHs与老年血压升高显著相关[43]。殷文军等[14]选取了三个年龄段(<18岁,18~60岁,≥60岁)的人群作为研究对象,其研究结果未发现基于尿∑OH- PAHs水平估算的每日摄入苯并[a]芘毒性当量与血压、高血压前期之间存在相关关系,但尿∑OH-PAHs与血压、高血压前期之间呈正相关,对于每一种OH-PAHs是否都与血压相关联还需更多的研究来证实。此外,研究发现肥胖可能是PAHs暴露与血压间的重要中介因素[51],同时暴露于多种环境污染物则可能造成混杂[44]。
PAHs暴露引起血压变化的机制已取得部分进展,现有研究发现激活芳香烃受体信号通路、增加糖皮质激素水平、损害内皮型一氧化氮合酶和一氧化氮通路以及激活肾素-血管紧张素系统等是使血压升高的可能路径[52]。此外,长期PAHs暴露可能导致SD大鼠和原代人脐静脉内皮细胞的内皮功能障碍,从而导致心血管损伤引起血压改变[53]。Morales-Rubio等[54]发现孕鼠暴露于含PAHs的超细小颗粒会通过炎症反应及氧化应激促进胎盘应激并使肾素-血管紧张素系统相关蛋白表达增加,从而导致后代血压改变。
人体对PAHs暴露主要通过吸入、皮肤接触和摄入等途径发生,从采样途径来看,纳入研究主要通过空气采样、尿液中OH-PAHs的测定两种方式对人体PAHs暴露量进行估算,但除了上述两种方法现有研究中还使用了组织样本收集 [29]、皮肤擦拭采样[55]方法来评估人体PAHs的暴露水平,不同的采样途径可能会造成结果之间的差异,而上述采样方法各有优势和局限性,应根据具体的研究目的和条件选择合适的检测技术和评估模型。
本研究也存在一定的局限性。由于纳入研究在PAHs种类、采样途径、结局评价标准等方面存在较大差异,因此无法将纳入研究的所有结果进行定量合并分析。本研究纳入Meta分析的研究数量较少且年份较为久远,尚不能判断与现今研究间的差异。纳入队列研究数量有限,尤其是以儿童青少年为研究对象的高质量队列研究较为缺乏,现有研究多关注PAHs暴露对成人尤其是特殊职业暴露人群的影响且有关PAHs暴露影响人群血压变化的机制有待进一步阐明。
综上所述,目前的研究发现PAHs暴露与儿童青少年及成人的血压呈现相关性,且纳入的多数研究认为PAHs暴露与收缩压和舒张压的升高有关且是高血压的危险因素。但由于采样途径不同、研究人群不同、队列研究较少等因素,仍需开展高质量的队列研究来探究PAHs的不同暴露途径在人体的蓄积以及其他因素在PAHs暴露与血压关联的中介效应,同时还应关注PAHs长期低剂量暴露对不同年龄群体血压的影响是否一 致。
附件见《医学新知》官网附录(https://yxxz.whuznhmedj.com/futureApi/storage/appendix/202412025.pdf)
伦理声明:不适用
作者贡献:文献收集与筛选、偏倚风险与适用性评价、数据分析、论文撰写:肖雨晴、施羡文;论文审校及修改、经费支持:刘琴
数据获取:本研究中使用和(或)分析的所有数据均包含在本文中
利益冲突声明:无
致谢:不适用
1.孙芹, 田伟帆, 罗婷婷, 等. 2023年世界卫生组织《全球高血压报告》解读[J]. 中国胸心血管外科临床杂志, 2024, 31(2): 203-208. [Sun Q, Tian WF, Luo TT, et al. Interpretation of the World Health Organization global report on hypertension 2023[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(2): 203-208.] DOI: 10.7507/1007-4848.202311032.
2.Song P, Zhang Y, Yu J, et al. Global prevalence of hypertension in children: a systematic review and Meta-analysis[J]. JAMA Pediatr, 2019, 173(12): 1154-1163. DOI: 10.1001/jamapediatrics.2019.3310.
3.罗云梅, 曾智, 何文博, 等. 我国成人高血压的流行病学现状及趋势[J]. 中国胸心血管外科临床杂志, 2024, 31(6): 922-928. [Luo YM, Zeng Z, He WB, et al. Current epidemiology and trend of hypertension in Chinese adult[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(6): 922-928.] DOI: 10.7507/1007-4848.202310058.
4.Zappa M, Golino M, Verdecchia P, et al. Genetics of hypertension: from monogenic analysis to GETomics[J]. J Cardiovasc Dev Dis, 2024, 11(5): 154. DOI: 10.3390/jcdd11050154.
5.Huang S, Li Q, Liu H, et al. Urinary monohydroxylated polycyclic aromatic hydrocarbons in the generapopulation from 26 provincial capital cities in China: levels, influencing factors, and health risks[Jl. Environ Int, 2022, 160: 107074. DOI: 10.1016/j.envint.2021.107074.
6.Dobraca D, Lum R, Sjodin A, et al. Urinary biomarkers of polycyclic aromatic hydrocarbons in pre- and peri-pubertal girls in northern California: predictors of exposure and temporal variability[J]. Environ Res, 2018, 165: 46-54. DOI: 10.1016/j.envres.2017.11.011.
7.周莉. 尿多环芳烃代谢物水平与高血压的关联研究[D]. 山西: 山西医科大学, 2022. [Zhou L. Study on the association between urine polycyclic aromatic hydrocarbon metabolite level and hypertension[D]. Shanxi: Shanxi Medical University, 2022.] DOI: 10.27288/d.cnki.gsxyu.2021.000485.
8.Wang F, Wang Y, Wang Y, et al. Urinary polycyclic aromatic hydrocarbon metabolites were associated with hypertension in US adults: data from NHANES 2009-2016[J]. Environ Sci Pollut Res Int, 2022, 29(53): 80491-80501. DOI: 10.1007/s11356-022-21391-8.
9.Trasande L, Urbina EM, Khoder M, et al. Polycyclic aromatic hydrocarbons, brachial artery distensibility and blood pressure among children residing near an oil refinery[J]. Environ Res, 2015, 136: 133-140. DOI: 10.1016/j.envres.2014.08.038.
10.Feng Q, Wei J, Wang Y, et al. Focusing on testosterone levels in male: a half-longitudinal study of polycyclic aromatic hydrocarbon exposure and diastolic blood pressure in coke oven workers[J]. Environ Pollut, 2023, 329: 121614. DOI: 10.1016/j.envpol.2023.121614.
11.Jacobs L, Buczynska A, Walgraeve C, et al. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons[J]. Environ Res, 2012, 117: 60-67. DOI: 10.1016/j.envres.2012.05.003.
12.Liu M, Zhao L, Liu L, et al. Associations of urinary polycyclic aromatic hydrocarbon metabolites and blood pressure with the mediating role of cytokines: a panel study among children[J]. Environ Sci Pollut Res Int, 2022, 29(49): 74921-74932. DOI: 10.1007/s11356-022-21062-8.
13.Zhu Y, Zhang C, Liu D, et al. Ambient air pollution and risk of gestational hypertension[J]. Am J Epidemiol, 2017, 186(3): 334-343. DOI: 10.1093/aje/kwx097.
14.殷文军. 个体PAHs暴露特征与血压、动脉粥样硬化性心血管疾病风险的影响因素研究[D]. 武汉: 华中科技大学, 2018. [Yin WJ. Characteristics of individual-level exposure to PAHs and factors affecting the association of individual PAHs exposurewith blood pressure or risk of atherosclerotic cardiovascular disease[D]. Wuhan: Huazhong University of Science and Technology, 2018.] DOI: 10.7666/d.D01546249.
15.张永雷, 吕懿, 李扬帆, 等. 焦炉工人高血压发病队列研究 [J]. 中国药物与临床, 2016, 16(12): 1705-1709. [Zhang YL, Lyu Y, Li YF, et al. Incidence of hypertension in coke oven workers: a cohort study[J]. Chinese Remedies & Clinics, 2016, 16(12): 1705-1709.] DOI: 10.11655/zgywylc2016.12.001.
16.Alhamdow A, Lindh C, Albin M, et al. Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons[J]. Sci Rep, 2017, 7(1): 9426. DOI: 10.1038/s41598-017-09956-x.
17.Bangia KS, Symanski E, Strom SS, et al. A cross-sectional analysis of polycyclic aromatic hydrocarbons and diesel particulate matter exposures and hypertension among individuals of Mexican origin[J]. Environ Health, 2015, 14: 51. DOI: 10.1186/s12940-015-0039-2.
18.Barros B, Paiva AM, Oliveira M, et al. Baseline data and associations between urinary biomarkers of polycyclic aromatic hydrocarbons, blood pressure, hemogram, and lifestyle among wildland firefighters[J]. Front Public Health, 2024, 12: 1338435. DOI: 10.3389/fpubh.2024.1338435.
19.Lee T, Kim DH, Ryu JY. Association between urinary polycyclic aromatic hydrocarbons and hypertension in the Korean population: data from the Second Korean National Environmental Health Survey (2012-2014)[J]. Sci Rep, 2020, 10(1): 17142. DOI: 10.1038/s41598-020-74353-w.
20.梁娇君, 易桂林, 毛革诗, 等. 焦炉逸散物对工人血压和心电图的影响[J]. 中华劳动卫生职业病杂志, 2016, 34(9): 667-669. [Liang JJ, Yi GL, Mao GS, et al. Influence of coke oven emissions on workers' blood pressure and electrocardiographic findings[J]. Chinese Journal of Industrial Hygiene and Occupational Diseases, 2016, 34(9): 667-669.] DOI: 10.3760/cma.j.issn.1001-9391.2016.09.007.
21.Liao D, Xiong S, An S, et al. Association of urinary polycyclic aromatic hydrocarbon metabolites with gestational diabetes mellitus and gestational hypertension among pregnant women in southwest China: a cross-sectional study[J]. Environ Pollut, 2024, 343: 123206. DOI: 10.1016/j.envpol.2023.123206.
22.Lu L, Ni R. Association between polycyclic aromatic hydrocarbon exposure and hypertension among the U.S. adults in the NHANES 2003-2016: a cross-sectional study[J]. Environ Res, 2023, 217: 114907. DOI: 10.1016/j.envres.2022.114907.
23.Prunicki M, Cauwenberghs N, Ataam JA, et al. Immune biomarkers link air pollution exposure to blood pressure in adolescents[J]. Environ Health, 2020, 19(1): 108. DOI: 10.1186/s12940-020-00662-2.
24.Ranjbar M, Rotondi MA, Ardern CI, et al. Urinary biomarkers of polycyclic aromatic hydrocarbons are associated with cardiometabolic health risk[J]. PloS one, 2015, 10(9): e137536. DOI: 10.1371/journal.pone.0137536.
25.Sancini A, Caciari T, Sinibaldi F, et al. Blood pressure changes and polycyclic aromatic hydrocarbons in outdoor workers[J]. Clin Ter, 2014, 165(4): e295-e303. DOI: 10.7417/CT.2014.1746.
26.Shahsavani S, Fararouei M, Soveid M, et al. The association between the urinary biomarkers of polycyclic aromatic hydrocarbons and risk of metabolic syndromes and blood cell levels in adults in a Middle Eastern area[J]. J Environ Health Sci Eng, 2021, 19(2): 1667-1680. DOI: 10.1007/s40201-021-00722-w.
27.Shahsavani S, Fararouei M, Soveid M, et al. Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in Shiraz, Iran: urinary levels, health risk assessment and mediation effect of MDA on the risk of metabolic syndromes[J]. Int Arch Occup Environ Health, 2022, 95(5): 1043-1058. DOI: 10.1007/s00420-021-01822-8.
28.Sun Y, Kan Z, Zhang Z, et al. Association of occupational exposure to polycyclic aromatic hydrocarbons in workers with hypertension from a northeastern Chinese petrochemical industrial area[J]. Environ Pollut, 2023, 323: 121266. DOI: 10.1016/j.envpol.2023.121266.
29.Wang B, Li Z, Ma Y, et al. Association of polycyclic aromatic hydrocarbons in housewives' hair with hypertension[J]. Chemosphere, 2016, 153: 315-321. DOI: 10.1016/j.chemosphere. 2016.03.067.
30.Wang Q, Xu X, Zeng Z, et al. Antioxidant alterations link polycyclic aromatic hydrocarbons to blood pressure in children[J]. Sci Total Environ, 2020, 732: 138944. DOI: 10.1016/j.scitotenv.2020.138944.
31.Xu J, Niehoff NM, White AJ, et al. Fossil-fuel and combustion-related air pollution and hypertension in the Sister Study[J]. Environ Pollut, 2022, 315: 120401. DOI: 10.1016/j.envpol. 2022.120401.
32.商惠珍, 孙建娅, 张玉英, 等. 某焦化厂接触多环芳烃的工人代谢综合征患病情况[J]. 职业与健康, 2011, 27(20): 2291-2293. [Shang HZ, Sun JY, Zhang YY, et al. Prevalence of metabolism syndrome among workers exposed to polycyclic aromatic hydrocarbonsin a coke-oven plant[J]. Occup and Health, 2011, 27(20): 2291-2293.] DOI: 10.13329/j.cnki.zyyjk.2011.20.007.
33.马一飞, 姚喜元, 王慧敏, 等. 焦炉工尿中多环芳烃代谢物和正常高值血压的关系[J]. 中国职业医学, 2022, 49(6): 621-625. [Ma YF, Yao XY, Wang HM, et al. Association between urinary polycyclic aromatic hydrocarbons and high-normal blood pressure in coke oven workers[J]. China Occupational Medicine, 2022, 49(6): 621-625.] DOI: 10.20001/j.issn.2095-2619.20221204.
34.邱崇莹. 焦化工人接触焦炉逸散物和苯并[a]芘与血压和心电图损害的研究[D]. 重庆: 重庆医科大学, 2013. [Qiu CY. The effect of occupational exposure to coke oven emission and bezo[a]pyrene on blood pressure and electrocardiogram in coke oven workers[D]. Chongqing: ChongQing Medical University, 2013.] DOI: 10.7666/d.Y2412608.
35.芮青妍. 天津区域人群血浆中硝基多环芳烃的内暴露水平及健康风险分析[D]. 天津: 天津理工大学, 2020. [Rui QY. Internal exposure level and healthrisk analysis of nitro polycyclicaromatic hydrocarbons in humanplasma in Tianjin area[D]. Tianjin: Tianjin University of Technology, 2020.] DOI: 10.27360/d.cnki.gtlgy.2020.000592.
36.石磊, 智永芬, 张红明, 等. 尿1-羟基芘与年龄交互作用对焦化工人高血压患病的影响[J]. 中国药物与临床, 2017, 17(1): 7-9. [Shi L, Zhi YF, Zhang HM, et al. Effect of urinary 1-hydroxypyrene interaction with age on prevalence of hypertension in coke-oven workers[J]. Chinese Remedies & Clinics, 2017, 17(1): 7-9.] DOI: 10.11655/zgywylc2017.01.003.
37.谭皓, 李济超, 杨晓波, 等. 焦炉作业与代谢综合征的相关性研究[J]. 环境与职业医学, 2006, 23(2): 93-95. [Tan H, Li JC, Yang XB, et al. Study on the correlation between metabolic syndrome and coke oven work[J]. Journal of Environmental & Occupational Medicine, 2006, 23(2): 93-95.] DOI: 10.13213/j.cnki.jeom.2006.02.003.
38.田凤契, 郑金平, 孙建娅, 等. 焦炉作业工人高血压患病率及其危险因素分析[J]. 山西医科大学学报, 2008, 39(6): 548-550. [Tian FJ, Zheng JP, Sun JY, et al. Morbidity rate and its risk factors of hypertension among cake-oven workers[J]. Journal of Shanxi Medical University, 2008, 39(6): 548-550.] DOI: 10.3969/j.issn.1007-6611.2008.06.021.
39.尹京晶. 焦炉逸散物致线粒体DNA甲基化及血压改变的分子流行病学研究[D]. 辽宁: 中国医科大学, 2022. [Yin JJ. Molecular epidemiology study on the mitochondrial DNAmethylation and blood pressure alterations induced by coke ovenemissions[D]. Liaoning: China Medical University, 2022.] DOI: 10.27652/d.cnki.gzyku.2022.001680.
40.黎丹妮, 张丽娥, 杨洁, 等. 广西某人群尿中多环芳烃代谢物与高血压1期的关系[J]. 环境卫生学杂志, 2020, 10(6): 527-533. [Li DN, Zhang LE, Yang J, et al. Association between polycyclic aromatic hydrocarbon metabolites in urine and stage 1 hypertension in a population of Guangxi Zhuang Autonomous Region[J]. Journal of Environmental Hygiene, 2020, 10(6): 527-533.] DOI: 10.13421/j.cnki.hjwsxzz.2020.06.002.
41.Kim JH, Hong Y. Associations among urinary 1-hydroxypyrene level, oxidative stress, and high blood pressure: a panel study among elderly Koreans[J]. Chemosphere, 2024, 368: 143693. DOI: 10.1016/j.chemosphere.2024.143693.
42.Trask M, Rahman SM, Kampouri M, et al. Childhood exposure to polycyclic aromatic hydrocarbons (PAHs) and cardiometabolic indicators in childhood and adolescence: findings from a cohort study in rural Bangladesh[J]. Environ Res, 2025, 278: 121653. DOI: 10.1016/j.envres.2025.121653.
43.贺淼, 孙庆华, 王彦文, 等. 多环芳烃混合暴露对老年人血压的影响: 一项多中心定群研究[J]. 环境卫生学杂志, 2025, 15(6): 530-538. [He M, Sun QH, Wang YW, et al. Impact of mixed exposure to polycyclic aromatic hydrocarbons on blood pressure in the elderly: a multicenter cohort study[J]. Journal of Environmental Hygiene, 2025, 15(6): 530-538.] DOI: 10.13421/j.cnki.hjwsxzz.2025.06.010.
44.Abulikemu A, Zhang X, Su X, et al. Particulate matter, polycyclic aromatic hydrocarbons and metals, platelet parameters and blood pressure alteration: multi-pollutants study among population[J]. Sci Total Environ, 2024, 941: 173657. DOI: 10.1016/j.scitotenv.2024.173657.
45.Chen X, Dong L, Yang L, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and blood pressure in the early life of children[J]. Ecotoxicol Environ Saf, 2025, 291: 117830. DOI: 10.1016/j.ecoenv.2025.117830.
46.Peng F, Lin C, Wada R, et al. Cardiovascular risk factors in relation to hair polycyclic aromatic hydrocarbons in the NESCAV study[J]. Environ Int, 2024, 194: 109170. DOI: 10.1016/j.envint.2024.109170.
47.Sun M, Li X, Geng M, et al. Associations of coke oven emission exposure with pulmonary function, blood pressure, blood cell parameters, and biochemical indices in coking workers: a cross-sectional pilot study[J]. Environ Sci Process Impacts, 2025, 27(1): 91-103. DOI: 10.1039/d4em00306c.
48.孙瑜, 宋莉, 马万里, 等. 石化工人多环芳烃暴露促进高血压中介机制分析[J]. 哈尔滨工业大学学报, 2025, 57(5): 22-29. [Sun Y, Song L, Ma WL, et al. Analysis of mediating mechanisms of polycyclic aromatic hydrocarbonexposure in hypertension among petrochemical workers[J]. Journal of Harbin Institute of Technology, 2025, 57(5): 22-29.] DOI: 10.11918/202405003.
49.Mann JK, Lutzker L, Holm SM, et al. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children[J]. Environ Res, 2021, 195: 110870. DOI: 10.1016/j.envres.2021.110870.
50.Jain RB. Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: data for US children, adolescents, and adults[J]. Environ Pollut, 2020, 266(Pt 1): 115178. DOI: 10.1016/j.envpol.2020.115178.
51.Yin W, Hou J, Xu T, et al. Obesity mediated the association of exposure to polycyclic aromatic hydrocarbon with risk of cardiovascular events[J]. Sci Total Environ, 2018, 616-617: 841-854. DOI: 10.1016/j.scitotenv.2017.10.238.
52.鲁新宇, 沈昊阳, 张颖, 等. 多环芳烃影响心血管类疾病发生及其机制的研究进展[J]. 暨南大学学报(自然科学与医学版), 2024, 45(2): 210-226. [Lu XY, Shen HY, Zhang Y, et al. Research progress of effects and mechanism of polycyclic aromatic hydrocarbons on cardiovascular diseases[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2024, 45(2): 210-226.] DOI: 10.11778/j.jdxb.20230233.
53.Liu J, He J, Liao Z, et al. Environmental dose of 16 priority-controlled PAHs induce endothelial dysfunction: an in vivo and in vitro study[J]. Sci Total Environ, 2024, 919: 170711. DOI: 10.1016/j.scitotenv.2024.170711.
54.Morales-Rubio RA, Alvarado-Cruz I, Manzano-Leon N, et al. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice[J]. Part Fibre Toxicol, 2019, 16(1): 7. DOI: 10.1186/s12989-019-0289-1.
55.郭建, 罗孝俊, 管克兰, 等. 石化工业园员工PAHs的皮肤暴露及健康风险[J]. 中国环境科学, 2022, 42(11): 5427-5435. [Guo J, Luo XJ, Guan KL, et al. A study on employees'skin exposure to polycyclic aromatic hydrocarbons and health risk in a petrochemical industrial park[J]. China Environmental Science, 2022, 42(11): 5427-5435.] DOI: 10.3969/j.issn.1000-6923.2022.11.049.