Welcome to visit Zhongnan Medical Journal Press Series journal website!

The research progress into long non-coding RNA in non-small cell lung cancer

Published on Jun. 25, 2023Total Views: 2719 timesTotal Downloads: 1060 timesDownloadMobile

Author: Juan WANG 1 Xu HAN 1 Ning ZHAO 1 Hong-Tao GUO 2 Xing LIAO 1 Miao JIANG 1 Hao GU 1

Affiliation: 1. Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China 2. Department of Rheumatology and Immunology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China

Keywords: Non-small cell lung cancer Long non-coding RNA Diagnosis Treatment Prognosis

DOI: 10.12173/j.issn.1004-5511.202207025

Reference: Wang J, Han X, Zhao N, Guo HT, Liao X, Jiang M, Gu H. The research progress into long non-coding RNA in non-small cell lung cancer[J]. Yixue Xinzhi Zazhi, 2023, 33(3): 228-236. DOI: 10.12173/j.issn.1004-5511.202207025.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Non-small cell lung cancer (NSCLC) with high morbidity and mortality, is one of the most important subtypes of lung cancer, which poses a serious threat the human health. There are still many challenges in the diagnosis and treatment of NSCLC and there is currently a need to explore effective treatment targets and biomarkers for diagnosis and prognosis. Long noncoding RNA (lncRNA) is a non-coding RNA with a length of more than 200 nucleotides and plays a key role in the progress, diagnosis and treatment of carci-nomas. Many studies have investigated the dysregulation of lncRNA in NSCLC, which could regulate the proliferation, growth and progress of tumor cells and provide a potential application for diagnosis, treatment and prognosis of NSCLC in clinical settings. Therefore, this paper aims to demonstrate the progress of research into lncRNA related to occurrence, progress, diagnosis, treatment and prognosis of NSCLC.

Full-text
Please download the PDF version to read the full text: download
References

1.Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention[J]. Clin Chest Med, 2020, 41(4): 1-24. DOI: 10.1016/j.ccm.2019.10.001.

2.Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical prac-tice guidelines in oncology[J]. J Natl Compr Canc Netw, 2017, 15(4): 504-535. DOI: 10.6004/jnccn.2017.0050.

3.Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454. DOI: 10.1038/nature25183.

4.Ricciuti B, Mencaroni C, Paglialunga L, et al. Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy[J]. Med Oncol, 2016,  33(2): 18. DOI: 10.1007/s12032-016-0731-2.

5.Wu Y, Zhang L, Zhang L, et al. Long non-coding RNA HOTAIR promotes tumor cell invasion and me-tastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma[J]. Int J Oncol, 2015, 46(6): 2586-2594. DOI: 10.3892/ijo.2015.2976.

6.Bach DH, Lee SK. Long noncoding RNAs in cancer cells[J]. Cancer Lett, 2018, 419: 152-166. DOI: 10.1016/j.canlet.2018.01.053.

7.Du Z, Fei T, Verhaak RG, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer[J]. Nat Struct Mol Biol, 2013, 20(7): 908-913. DOI: 10.1038/nsmb.2591.

8.Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas[J]. Mol Cancer, 2011, 10: 38. DOI: 10.1186/1476-4598-10-38.

9.Wozniak MB, Scelo G, Muller DC, et al. Circulating MicroRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer[J]. PLoS One, 2015, 10(5): e0125026. DOI: 10.1371/journal.pone.0125026.

10.Liang W, Zhao Y, Huang W, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA)[J]. Theranostics, 2019, 9(7): 2056-2070. DOI: 10.7150/thno.28119.

11.Naemura M, Murasaki C, Inoue Y, et al. Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells[J]. Anticancer Res, 2015, 35(10): 5377-5382. https://pubmed.ncbi.nlm.nih.gov/26408699/.

12.Holdenrieder S. Biomarkers along the continuum of care in lung cancer[J]. Scand J Clin Lab Invest Suppl, 2016, 245: S40-S45. DOI: 10.1080/00365513.2016.1208446.

13.Jiang N, Meng X, Mi H, et al. Circulating lncRNA XLOC_009167 serves as a diagnostic biomarker to predict lung cancer[J]. Clin Chim Acta, 2018, 486: 26-33. DOI: 10.1016/j.cca.2018.07.026.

14.Kishikawa T, Otsuka M, Ohno M, et al. Circulating RNAs as new biomarkers for detecting pancreatic cancer[J]. World J Gastroenterol, 2015, 21(28): 8527-8540. DOI: 10.3748/wjg.v21.i28.8527.

15.Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine[J]. Mod Pathol, 2013, 26(2): 155-165. DOI: 10.1038/modpathol.2012.160.

16.Li C, Lv Y, Shao C, et al. Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis[J]. J Cell Physiol, 2019, 234(11):  20721-20727. DOI: 10.1002/jcp.28678.

17.Kamel LM, Atef DM, Mackawy AMH, et al. Circulating long non-coding RNA GAS5 and SOX2OT as po-tential biomarkers for diagnosis and prognosis of non-small cell lung cancer[J]. Biotechnol Appl Bio-chem, 2019, 66(4): 634-642. DOI: 10.1002/bab.1764.

18.Li W, Sun M, Zang C, et al. Upregulated long non-coding RNA AGAP2-AS1 represses LATS2 and KLF2 expression through interacting with EZH2 and LSD1 in non-small-cell lung cancer cells[J]. Cell Death Dis, 2016, 7(5): e2225. DOI: 10.1038/cddis.2016.126.

19.Fan KJ, Liu Y, Yang B, et al. Prognostic and diagnostic significance of long non-coding RNA AGAP2-AS1 levels in patients with non-small cell lung cancer[J]. Eur Rev Med Pharmacol Sci, 2017, 21(10): 2392-2396. https://pubmed.ncbi.nlm.nih.gov/28617550/.

20.Tao Y, Tang Y, Yang Z, et al. Exploration of serum exosomal lncRNA TBILA and AGAP2-AS1 as promis-ing biomarkers for diagnosis of non-small cell lung cancer[J]. Int J Biol Sci, 2020, 16(3): 471-482. DOI: 10.7150/ijbs. 39123.

21.Ji D, Zhong X, Jiang X, et al. The role of long non-coding RNA AFAP1-AS1 in human malignant tu-mors[J]. Pathol Res Pract, 2018, 214(10): 1524-1531. DOI: 10.1016/j.prp.2018.08.014.

22.Zhang F, Li J, Xiao H, et al. AFAP1-AS1: a novel oncogenic long non-coding RNA in human cancers[J]. Cell Prolif, 2018, 51(1): e12397. DOI: 10.1111/cpr.12397.

23.Li W, Li N, Kang X, et al. Circulating long non-coding RNA AFAP1-AS1 is a potential diagnostic bi-omarker for non-small cell lung cancer[J]. Clin Chim Acta, 2017, 475: 152-156. DOI: 10.1016/j.cca.2017.10.027.

24.Jiang MC, Ni JJ, Cui WY, et al. Emerging roles of lncRNA in cancer and therapeutic opportunities[J]. Am J Cancer Res, 2019, 9(7): 1354-1366. https://pubmed.ncbi.nlm.nih.gov/31392074/.

25.Bennett CF, Baker BF, Pham N, et al. Pharmacology of antisense drugs[J]. Annu Rev Pharmacol Toxicol, 2017, 57: 81-105. DOI: 10.1146/annurev-pharmtox-010716- 104846.

26.Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repres-sion and activation[J]. Cell, 2014, 159(3): 647-661. DOI: 10.1016/j.cell.2014.09.029.

27.Koch L. Functional genomics: screening for lncRNA function[J]. Nat Rev Genet, 2017, 18(2): 70. DOI: 10.1038/nrg.2016.168.

28.Liu SJ, Horlbeck MA, Cho SW, et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells[J]. Science, 355(6320): aah7111. DOI: 10.1126/science.aah7111.

29.Endo H, Shiroki T, Nakagawa T, et al. Enhanced expression of long non-coding RNA HOTAIR is asso-ciated with the development of gastric cancer[J]. PLoS One, 2013,  8(10): e77070. DOI: 10.1371/journal.pone.0077070.

30.Fabbro C, Ali-Boucetta H, Da Ros T, et al. Targeting carbon nanotubes against cancer[J]. Chem Com-mun (Camb), 2012, 48(33): 3911-3926. DOI: 10.1039/c2cc17995d.

31.Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine[J]. Clin Cancer Res, 2010, 16(24): 6139-6149. DOI: 10.1158/1078-0432.Ccr-10-0978.

32.Mattheolabakis G, Rigas B, Constantinides PP.  Nanodelivery strategies in cancer chemotherapy: bio-logical rationale and pharmaceutical perspectives[J]. Nanomedicine (Lond), 2012, 7(10): 1577-1590. DOI: 10.2217/nnm.12.128.

33.Webster DM, Sundaram P, Byrne ME. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics[J]. Eur J Pharm Biopharm, 2013, 84(1): 1-20. DOI: 10.1016/j.ejpb.2012.12.009.

34.Yang T, Choi MK, Cui FD, et al. Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells[J]. Pharm Res, 24(12): 2402-2411. DOI: 10.1007/s11095-007-9425-y.

35.Qiu L, Chen T, Öçsoy I, et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy[J]. Nano Lett, 2015, 15(1): 457-463. DOI: 10.1021/nl503777s.

36.Huang J, Lin C, Dong H, et al. Targeting MALAT1 induces DNA damage and sensitize non-small cell lung cancer cells to cisplatin by repressing BRCA1[J]. Cancer Chemother Pharmacol, 2020, 86(5): 663-672. DOI: 10.1007/s00280-020-04152-7.

37.Yang T, Li H, Chen T, et al. LncRNA MALAT1 depressed chemo-sensitivity of NSCLC cells through di-rectly functioning on miR-197-3p/p120 catenin axis[J]. Mol Cells, 2019, 42(3): 270-283. DOI: 10.14348/molcells.2019.2364.

38.Gutschner T, Hämmerle M, Eissmann M, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells[J]. Cancer Res, 73(3): 1180-1189. DOI: 10.1158/0008-5472.Can-12-2850.

39.Jiang P, Xu H, Xu C, et al. NEAT1 contributes to the CSC-like traits of A549/CDDP cells via activating Wnt signaling pathway[J]. Chem Biol Interact, 2018, 296: 154-161. DOI: 10.1016/j.cbi.2018.10.001.

40.Gu G, Hu C, Hui K, et al. NEAT1 knockdown enhances the sensitivity of human non-small-cell lung can-cer cells to anlotinib[J]. Aging (Albany NY), 2021, 13(10): 13941-13953. DOI: 10.18632/aging.203004.

41.Jiang P, Chen A, Wu X, et al. NEAT1 acts as an inducer of cancer stem cell-like phenotypes in NSCLC by inhibiting EGCG-upregulated CTR1[J]. J Cell Physiol, 2018, 233(6): 4852-4863. DOI: 10.1002/jcp.26288.

42.Li B, Gu W, Zhu X. NEAT1 mediates paclitaxel-resistance of non-small cell of lung cancer through acti-vation of Akt/mTOR signalling pathway[J]. J Drug Target, 2019, 27(10): 1061-1067. DOI: 10.1080/1061186x.2019.1585437.

43.Liu Y, Jiang H, Zhou H, et al. Lentivirus-mediated silencing of HOTAIR lncRNA restores gefitinib sensi-tivity by activating Bax/Caspase-3 and suppressing TGF-α/EGFR signaling in lung adenocarcinoma[J]. Oncol Lett, 2018, 15(3): 2829-2838. DOI: 10.3892/ol.2017.7656.

44.Yang Y, Jiang C, Yang Y, et al. Silencing of lncRNA-HOTAIR decreases drug resistance of non-small cell lung cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1[J]. Biochem Biophys Res Commun, 2018, 497(4): 1003-1010. DOI: 10.1016/j.bbrc. 2018.02.141.

45.Chen J, Shen Z, Zheng Y, et al. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR[J]. Int J Clin Exp Pathol, 2015, 8(7): 7878-7886. https://pubmed.ncbi.nlm.nih.gov/26339352/.

46.Ma J, Miao H, Zhang H, et al. LncRNA GAS5 modulates the progression of non-small cell lung cancer through repressing miR-221-3p and up-regulating IRF2[J]. Diagn Pathol, 2021, 16(1): 46. DOI: 10.1186/s13000-021-01108-0.

47.Yang X, Meng L, Zhong Y, et al. The long intergenic noncoding RNA GAS5 reduces cisplatin-resistance in non-small cell lung cancer through the miR-217/LHPP axis[J]. Aging (Albany NY), 2021, 13(2): 2864-2884. DOI: 10.18632/aging.202352.

48.Chen L, Ren P, Zhang Y, et al. Long non-coding RNA GAS5 increases the radiosensitivity of A549 cells through interaction with the miR-21/PTEN/Akt axis[J]. Oncol Rep, 2020, 43(3): 897-907. DOI: 10.3892/or.2020.7467.

49.Dong S, Qu X, Li W, et al. The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression[J]. J Hematol Oncol, 2015, 8: 43. DOI: 10.1186/s13045-015-0140-6.

50.Liu X, Huang G, Zhang J, et al. Prognostic and clinicopathological significance of long noncoding RNA MALAT-1 expression in patients with non-small cell lung cancer: a meta-analysis[J]. PLoS One, 2020, 15(10):  e0240321. DOI: 10.1371/journal.pone.0240321.

51.Bergman P, Brodin D, Lewensohn R, et al. Validation of the 7th TNM classification for non-small cell lung cancer: a retrospective analysis on prognostic implications for operated node-negative cases[J]. Acta Oncol, 2013, 52(6): 1189-1194. DOI: 10.3109/0284186x.2012.742960.

52.Fu Y, Li C, Luo Y, et al. Silencing of long non-coding RNA MIAT sensitizes lung cancer cells to gefitinib by epigenetically regulating miR-34a[J]. Front Pharmacol, 2018, 9: 82. DOI: 10.3389/fphar.2018.00082.

53.Liu HY, Lu SR, Guo ZH, et al. lncRNA SLC16A1-AS1 as a novel prognostic biomarker in non-small cell lung cancer[J]. J Investig Med, 2020, 68(1): 52-59. DOI: 10.1136/jim-2019-001080.

54.Qi G, Li L. Long non-coding RNA PVT1 contributes to cell growth and metastasis in non-small-cell lung cancer by regulating miR-361-3p/SOX9 axis and activating Wnt/β-catenin signaling pathway[J]. Biomed Pharmacother, 2020, 126: 110100. DOI: 10.1016/j.biopha.2020.110100.

55.Xiao M, Feng Y, Liu C, et al. Prognostic values of long noncoding RNA PVT1 in various carcinomas: an updated systematic review and meta-analysis[J]. Cell Prolif, 2018, 51(6): e12519. DOI: 10.1111/cpr.12519.

56.Cui D, Yu CH, Liu M, et al. Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prog-nosis of non-small cell lung cancer[J]. Tumour Biol, 2016, 37(3): 4127-4134. DOI: 10.1007/s13277-015-4261-x.

57.Wan L, Sun M, Liu GJ, et al. Long noncoding RNA PVT1 promotes non-small cell lung cancer cell prolif-eration through epigenetically regulating LATS2 expression[J]. Mol Cancer Ther, 2016, 15(5): 1082-1094. DOI: 10.1158/1535-7163.Mct-15-0707.

58.Li X, Lv F, Li F, et al. Long noncoding RNA H19 facilitates small cell lung cancer tumorigenesis through miR-140-5p/FGF9 Axis[J]. Onco Targets Ther, 2020, 13: 3525-3534. DOI: 10.2147/ott.S245710.

59.Zhang E, Li W, Yin D, et al. c-Myc-regulated long non-coding RNA H19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer[J]. Tumour Biol, 2016, 37(3): 4007-4015. DOI: 10.1007/s13277-015-4185-5.