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[ Abstract] Colorectal cancer (CRC) is the third most common cancer globally, with an
incidence rate ranked just behind lung cancer and breast cancer in women. Epithelial-mesenchymal
transition (EMT) enhances the migratory and invasive abilities of tumor cells but is also closely
associated with tumor recurrence and drug resistance. MicroRNAs (miRNAs) are a class of non-
coding RNAs that regulate the EMT process through various mechanisms and pathways. Therefore,
this review aims to summarize the roles and research progress of miRNAs in the regulation of EMT
in CRC, providing new insights into the complex regulation of EMT and offering potential strategies
for the prevention and treatment of CRC metastasis.
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Figure 1. Major signaling pathways involved in EMT-related miRNAs in CRC
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Table 1. Regulation of EMT-related miRNAs by natural compounds in CRC treatment
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